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Background (1/2)

• Linguistic semantics of plurals starts with Montague semanticists like
G. Link and F. Landman in the 1980s.

• They focused on set-theoretic modelling, and the models were talked about
informally in English or semiformally in a kind of logical language that
mixes first-order logic and lambda calculus (tricky because plurality is
fundamentally non-first order).

• The key idea was to replace the traditional universe of entities (or indi-
viduals) with a more general one that includes plural entities as well as
the familiar singular ones (also called atoms).

• The enlarged set of entities forms a kind of algebra called a complete
atomic join semilattice, and the join operation is used to combine en-
tities into larger ones.

• Predicates are classified according to whether they predicate only of atoms,
only of plurals, or of both.

Background (2/2)
Some central issues in plural theory:

• Do we need to distinguish between sums), such as Kim and Sandy, which
seem to be uniquely determined by their atoms, and things (sometimes
called groups), such as committees and rock bands, which are not?

• Can there be plural plurals (some of whose atoms are themselves plurals)?

The swarms converged. (ambiguous)

The philosophers and the linguists baffle each other. (three ways
ambiguous)

• How can we distinguish plural senses ((hyper-)intensions) from their ex-
tensions?
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If the Beatles hadn’t fired Pete Best, there might have been five of
them.

The ancients thought that The Morning Star and the Evening Star
were different heavenly bodies.

Are Jennifer Lopez and J. Lo the same person?

Today’s Presentation

• We revisit plural semantics, but instead of focusing on set-theoretic mod-
els, we axiomatize everything in HOL, starting with a Link-like extensional
theory.

• This leads to a simpler theory, and also one which can be more easily
ported into modern type theories that may not have set-theoretic models.

• Unlike the 1980s theories, we have plurals not just of entities, but of all
semantic types (and this is linguistically motivated—give examples).

• Since this is LLIC, of course there is a monad lurking in the background
(the nonempty powerset monad).

• Other issues, such as plural plurals and (hyper-)intensionality, we hope to
address next week.

Link 1983 Basics
N.B.: Link’s theory includes portions of matter (interpretations of mass

NPs), but we ignore them here.

• The domain of individuals E is a complete atomic boolean algebra with
join operation

⊔
called sum, order v called part-of, and set of atoms A

called singulars.

• The members of E \ A, which are sums of more than one atom, are called
plurals.

• The bottom element of E, called 0, isn’t used.

• a t b abbreviates
⊔
{a, b}.

• Names (e.g. Kim) denote singulars.

• Plural NPs (e.g. Kim and Sandy, the children) denote plurals.
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Link 1983 Predicates

• Most predicates (e.g. built the raft, carried the piano) denote subsets of
E \ {0}.

• Singulars of distributive predicates (e.g. is a pop star, is dying, sees Kim
denote subsets of A.

• Plurals of distributive predicates (e.g. are pop stars, are dying, see Kim)
work like this: if the corresponding singular predicate denotes S ⊆ A, then
the plural predicate denotes the set of all the plurals that are the sum of
a subset of S.

So if P is a singular predicate (e.g. is a pop star, is dying) with denotation
S, then the corresponding plural predicate plu(P ) denotes [S] \ S, where
[S], the complete join semilattice generated by [S], is defined by

[S] := {x ∈ E|∃T ⊆ S.(T 6= ∅) ∧ (x =
⊔
T )}

Link 1983 Quantification

• Singular existential and universal QPs (e.g. a book, every book) get the
standard Montague treatment.

• A singular definite NP like the book is translated as λP.P (ιx book′(x),
where it’s presupposed that book′ denotes a singleton.

• A plural definite NP like the books is translated as λP.P (σ∗x book′(x),
where it’s presupposed that book′ denotes a set with at least two elements.

Here, if a singular predicate Q denotes S ⊆ A, then σ∗x Q(x) is taken to
denote

⊔
S, the plural which is the sum of the entities in the denotation

of Q.

Toward a Higher Order Link-ish Theory of Plurals

• We’ll work in standard HOL with basic types e and t, where for any type
A, a ‘set of A’s’ means something of type A→ t.

• We abbreviate some useful functional terms:

{x}A := λxy : A.x = y

nonemptyA := λS : A→ t.∃x : A.S x

singletonA := λS : A→ t.∃x : A.S = {x}

injectiveA,B := λf : A→ B.∀xy : A.[(f x) = (f y)]→ x = y

⊆A := λST : A→ t.∀x : A.(S x)→ (T x)⋃
A := λS : (A→ t)→ t.λx : A.∃T : A→ t.(S T ) ∧ (T x)

∪A := λST : A→ t.λx : A.(S x) ∨ (T x)
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The Basic Ingredients of the Theory

• We introduce a unary type constructor written as a superscript prime,
e.g. A′. For example, e′ is our counterpart of Link’s complete atomic join
semilattice E \ {0} of singular and plural entities (but it is a type, not a
model-theoretic object).

• We introduce the family of constants⊔
A : (A′ → t)→ A′

For example,
⊔

e is our counterpart of Link’s sum.

• We introduce the family of constants

atomsA : A′ → A→ A

The intuition is that for an A-singular or plural m, (atoms m) is the set
of A’s that ‘belong’ to it. So, for example, if a is an entity, there will be
an e-singular m such that (atoms m) = {a}A. (There is nothing in Link
that corresponds to this.)

Some Defined Notions

• vA:= λmn : A′(atoms m) ⊆ (atoms n)

This corresponds to Link’s part-of order (but at all types).

• sngA := λm : A′.singleton (atoms m)

• pluA := λm : A′.¬(sng m)

The Four Axioms

• The first axiom says that applying
⊔

to a set of singulars and/or plurals
corresponds to unioning their sets of atoms:

` ∀S : A′ → t.atoms(
⊔
S) =⋃

(λT : A→ t.∃m : A′.(S m) ∧ (T = (atoms m)))

• And the rest say that atoms maps the A-singulars and plurals bijectively
to the nonempty sets of A’s:

` injective atomsA

` ∀m : A′.nonempty (atoms m)

` ∀S : A→ t.(nonempty S)→ ∃m : A′.S = (atoms m)
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Next Up

• It follows from these axioms that the types A′ are all complete atomic join
semilattices (without bottom).

• Moreover, we can define the families of functions needed to make (−)′ into
the (type-level part of) the functor of a monad.

• That monad is (up to isomorphism) the nonempty powerset monad.

Monads in HOL
In HOL, a monad consists of

a. A unary type constructor M

b. a type-parametrized family of constants

` ηA : A→ MA ((monadic) unit)

c. A doubly type-parametrized family of constants

`∗A,B : MA→ (A→ MB)→ MB (Klesili star)

subject to three axioms given below.

Equivalently, these constants can be introduced by natural-deduction rules:

Γ ` a : A
Γ ` ηAa : MA

Γ ` m : MA ∆, x : A ` f : MB

Γ,∆ ` m∗A,B (λx.f) : MB

Monad Axioms in HOL

1. left identity:

` ∀x : A.∀f : A→ MB.(ηx)∗f = f x

2. right identity:

` ∀m : MA.m∗η = m

3. associativity:

` ∀m : MA.∀f : A→ MB.∀g : B → MC. (m∗f)∗g = m∗(λx.(f x)∗g)

The µ transformation
µA := λk : M2A.k∗(λm : MA.m)

Monads Can be Defined at the Term Level
MA,B := λf : A→ B.λm : MA.m∗(λx : A.η(f x))

This shows that, categorically, a monad is a functor.
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So-Called Monadic Application
appA,B := λm : M(A → B).λk : MA.m∗A→B,B (λf : A → B. k∗A,B (λx :

A.ηB(f x)))
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