
Even More Plural Theory in HOL

Carl Pollard

September 13 & 20, 2018

Game Plan

• At first, we work in HOL with basic types e and t.

• For A a type, an ‘A-set’ means something of type A→ t.

• We inroduce a Link-isch theory, using a unary type constructor Agg of
aggregates.

• We make Agg into a monad.

• We then elaborate the theory to classify predicates and handle ‘fancy’
plurals.

• Eventually the theory will have to be framed in a richer type theory (at
least with dependent sums indexed by the natural numbers) in order to
handle predicates that can be predicated only of plurals.

• (Hyper-)intensionality will have to wait.

Review of Useful Defined Terms for Set-ish Business

{−}A := λxy : A.x = y

nonemptyA := λS : A→ t.∃x : A.S x

singletonA := λS : A→ t.∃x : A.S = {x}

pluraltonA := λS : A→ t.∃xy : A.(x 6= y) ∧ (S x) ∧ (S y)

injectiveA,B := λf : A→ B.∀xy : A.[(f x) = (f y)]→ x = y

⊆A:= λST : A→ t.∀x : A.(S x)→ (T x)⋃
A := λS : (A→ t)→ t.λx : A.∃T : A→ t.(S T ) ∧ (T x)

∪A := λST : A→ t.λx : A.(S x) ∨ (T x)

1



Link-isch Theory Basics (1/2)

• We introduce a unary type constructor Agg of aggregates.

• We introduce the type-indexed family of constants

atomsA : (Agg A)→ A→ t

axiomatized as bijections from the A-aggregates to the nonempty A-sets:

` injective atomsA

` ∀m : Agg A.nonempty (atoms m)

` ∀S : A→ t.(nonempty S)→ ∃m : Agg A.S = (atoms m)

Link-isch Theory Basics (2/2)

• We define our counterpart of Link’s part-of order as follows:

vA:= λmn : Agg A.(atoms m) ⊆ (atoms n)

which makes the bijection from A-aggregates to nonempty A-sets into an
order-isomorphism.

• We define singular and plural aggregates straightforwardly:

singularA := λm : Agg A.singleton (atoms m)

pluralA := λm : Agg A.pluralton (atoms m)

The Aggregate Monad
The nonempty powerset functor has a well-known monad structure (aka the

nondetermism monad), which we transfer to Agg via the atoms bijection:

Unit:

ηA : A→ (Agg A)

` ∀x : A.(atoms (ηA x)) = {x}

Multiplication:

µA : (Agg2A)→ (Agg A)

` ∀m : Agg2A.atoms (µA m) =⋃
(λS : A→ t.∃n : AggA.(atoms m n) ∧ (S = (atoms n)))

Functor at level of terms:

aggA,B : (A→ B)→ (Agg A)→ (Agg B)

` ∀f : A→ B.∀m : AggA.atoms (aggA,B f m) =
λy : B.∃x : A.(atoms m x) ∧ y = (f x)

2



Aggregate Sum

• We introduce a family of constants corresponding to Link’s (binary) sum:

` tA : (Agg A)→ (Agg A)→ (Agg A)

` ∀mn : Agg A.(atoms (m t n)) = (atoms m) ∪ (atoms n)

• The new axiom schema makes the order isomorphisms from aggregates to
nonempty sets of atoms into join-semilattice isomorphisms.

• We lack a counterpart to Link’s infinitary sum (so the join semilattices of
aggregates are not complete).

• We didn’t really need infinitary sums anyway.

Nonquantificational NPs

• As in traditional accounts, we translate names of entities with constants
of type e, e.g. j : e (John), m : e (Mary).

• And is treated as ambiguous between its familiar boolean meaning (for
conjoining truth values or functions with final result type t) and the new
meaning t.

• Entities can’t be summed, but the corresponding singular aggregates can,
e.g. (η j) t (η m) : Agg e (John and Mary).

Indifferent Predicates

• Predicates which can predicate of both singlars and plurals, such as per-
formed, are treated as sets of aggregates, i.e. (for entities) (Agg e)→ t:

perform ((η m) t (η j)) (Mary and John performed. [as a unit])

perform (η m) (Mary performed.)

• But Mary and John performed also has a distributive) reading, usually
expressed using boolean conjunction. We’ll come back to that.

• And Mary performed is standardly analyzed as having an entity predicate
(type e→ t). We’ll come back to that too.

3



Distributivity (1/2)

• We define an aggregate predicate to be distributive provided it holds of
an aggregate iff it holds of all the aggregate’s singular subparts:

distribA := λT : (Agg A)→ t.∀m : Agg A.(T m)↔
(∀n : AggA.((singular n) ∧ (n v m))→ (T n))

• We analyze distributive predicates (e.g.die) as aggregate predicates which
are axiomatically distributive:

` die : (Agg e)→ t

` (distrib die)

Distributivity (2/2)

• For each type A we can define two functions that set up a bijection be-
tween the A-predicates and the distributive (Agg A)-predicates, called
individualization and distributivization:

indivA := λT : (Agg A)→ t.λx : A.T (η x)

distA := λS : A→ t.λm : Agg A.∀x : A.(atoms m x)→ (S x)

Indifferent Predicates Revisited

• Any aggregate predicate T can be mapped to a distributive predicate,
namely dist (indiv T ).

• For example, the distributive reading of Mary and John performed can be
expressed (without boolean conjunction):

dist (indiv perform) ((η m) t (η j))

• Also, Mary performed can be expressed with an entity predicate:

indiv perform m

Singular and Plural Nouns (1/4)
N.B.: Here, by ‘noun’, we really mean ‘count noun’.

• On a first pass, we’ll treat (entity-)plural noun denotations as distributive
aggregate predicates ((Agg e) → t) and singular nouns as their individu-
alizations (a fortiori, entity predicates (e → t):

` bees : (Agg e)→ t

` distrib bees

bee := (indiv bees) : e→ t

• bees ((η e) t (η d)) (Eric and Derek are bees.)

bee s (Sam is a bee.)

4



Singular and Plural Nouns (2/4)

• For some common nouns such as swarm, the singular form already denotes
a predicate of aggregates, which moreover holds only of plurals. We ana-
lyze the corresponding plural nouns as denoting aggregates of aggregates:

` swarms : (Agg2 e)→ t

` distrib swarms

swarm := (indiv swarms) : (Agg e)→ t

` ∀m : Agg e.(swarm m)→ (plural m)

• swarm ((η e)t (η d)t (η b)t (η s)) (Eric, Derek, Buzz, and Sam are
a swarm.)

swarm (η e) (Eric is a swarm.)

(merely false; cf. ∗ Eric is bees)

Singular and Plural Nouns (3/4)

• This treatment of plural nouns isn’t quite right, because entity-plural noun
denotations can’t hold of entities, or even of singular aggregates:

a. Eric/the bee is/are/wants to be bees.

• Rather, they (and nondistributive plural predicates, such as be alike and
hate each other) can only hold of plural aggregates (John and Mary, the
children).

• In fact, it seems we really should say something stronger: that they can
only be predicated of plural aggregates.

• But as yet we can’t formalize that idea, because there are no types of
plural aggregates.

Singular and Plural Nouns (4/4)

• The following examples aren’t merely false:

a. The honeybee/Eric is/are/wants to be bumblebees.

b. The farmer/Pedro is/are alike.

c. The mathematician/Fermat hated each other.

• Negating them does not improve them.

• We’ll ignore this issue for now; we’ll eventually resolve it by adding a
separate type constructor for plurals .

• But not today.

5



Definites (1/2)

• We assume the is ambiguous:

thesngA : (A → t) → A, which presupposes a contextually salient
member of the argument predicate and returns it.

thepluA : ((Agg A)→ t))→ (Agg A), which presupposes a contextually
salient plural member of the predicate and returns it.

• Note that thesng(Agg A) and thepluA have the same type but different presup-
positions.

• [Eric, Derek, Buzz, and Sam]1 were bees. They1 gave a four-hour joint
presentation on waggle dance semantics. Then [the exhausted swarm]1
returned to it1s colony.

Definites (2/2)

• (thesnge bee) : e

(theplue bees) : Agg e

(thesng(Agg e) swarm) : Agg e

(theplu(Agg e) swarms) : Agg2 e

• (theplue bees) te (theplue wasps) : Agg e (an aggregate each of whose
atoms is either one of the bees or one of the wasps)

(η(Agg e) (theplue bees)) t(Agg e) (η(Agg e) (theplue wasps)) : Agg2 e (an
aggregate with two atoms: the bees and the wasps)

Nondistributable Plural Predicates (1/3)

• Nondistributable plural predicates differ from plural common nouns in
having no individual counterparts:

a. The bees/Sam and Buzz are alike/converged/buzzed each other.

b. ∗The bee/Sam is alike/converged/buzzed each other.

• Some nondistributable plural predicates aren’t fussy about what their ar-
guments are plurals of :

c. Eric and Derek/juggling and miming/donkeys and burros/the Rie-
mann Hypothesis and the Goldbach Conjecture/17 and 37/conjunc-
tion and sum are alike.

• We can analyze such predicates as families of type-indexed (ordinary)
predicates, e.g.

alikeA, convergeA : (Agg A)→ t

6



Nondistributable Plural Predicates (2/3)

• convergee : (Agg e)→ t

converge(Agg e) : (Agg2 e)→ t

(dist convergee) : (Agg2 e)→ t

• (convergee ((η s) t (η b)) (Sam and Buzz converged.)

(convergee (thesng(Agg e) swarm) (The swarm converged.)

• (converge(Agg e) (theplu(Agg e) swarms)) (The swarms converged.) [They

all headed to the same location.]

(dist convergee (theplu(Agg e) swarms)) (The swarms converged.) [Each

of them converged.]

(convergee (µe (theplu(Agg e) swarms))) (The swarms converged.) [The

bees in the swarms all headed to the same location.]

Nondistributable Plural Predicates (3/3)

• alikee : (Agg e)→ t

alike(Agg e) : (Agg2 e)→ t

(dist alikee) : (Agg2 e)→ t

• (alikee ((η s) t (η b)) (Sam and Buzz are alike.)

(alikee (theplue bees)) (The bees are alike.)

• Abbreviations:

bw := (theplue bees) te (the
plu
e wasps)

BW := (η(Agg e) (theplue bees)) t(Agg e) (η(Agg e) (theplue wasps))

• (alike(Agg e) BW) (The bees and the wasps are alike.) [They are similar
aggregates.]

(dist alikee BW) (The bees and the wasps are alike.) [The bees are
alike, and so are the wasps.]

(alikee bw) (The bees and the wasps are alike.) [The insects, which
comprise the bees and the wasps, are alike.]

7


