6
The Language PCF

In chapter 4, we have provided semantics for both typed and untyped A-calculus.
In this chapter we extend the approach to typed A-calculus with fixpoints (AY-
calculus), we suggest formal ways of reasoning with fixpoints, and we introduce
a core functional language called PCF [Sco93, Plo77]. PCF has served as a basis
for a large body of theoretical work in denotational semantics. We prove the
adequacy of the interpretation with respect to the operational semantics, and we
discuss the full abstraction problem, which has triggered a lot of research, both
in syntax and semantics.

In section 6.1, we introduce the notion of cpo-enriched CCC’s, which serves to
interpret the AY -calculus. In section 6.2, we introduce fixpoint induction and show
an application of this reasoning principle. In section 6.3, we introduce the language
PCF, define its standard denotational semantics and its operational semantics,
and we show a computational adequacy property: the meaning of a closed term
of basic type is different from L if and only if its evaluation terminates. In section
6.4, we address a tighter correspondence between denotational and operational
semantics, known as the full abstraction property. In section 6.5, we introduce
Vuillemin’s sequential functions, which capture first order PCF definability. In
section 6.6, we show how a fully abstract model of PCF can be obtained by
means of a suitable quotient of an (infinite) term model of PCF.

6.1 The \Y-calculus

The AY-calculus is the typed A-calculus extended with a family of constants Y
of type (¢ — ¢) — o for each type o (Y for short), with the following reduction
rule:

Y) YM - MYM).
It is also convenient to introduce a special constant Q% at each type (to be inter-
preted by 1).

Definition 6.1.1 (cpo-enriched-CCC) A cartesian closed category C is called
a cpo-enriched cartesian closed category if all its homsets are cpo’s, if composi-
tion is continuous, if pairing and currying are monotonic, and if the following
strictness conditions hold (for all f of the appropriate type):

Lof=1 evo(l,fi=L1.

i 6.1 The XY -calculus 125

Remark 6.1.2 (1) Notice that our definition of a cpo-enriched COC involves the
cartesian closed structure of the category: thus in our terminology a cpo-enriched

CCC is not just a cpo-enriched category (see definition 7.1.5) that happens to be
cartesian closed.

(2) The strictness conditions of definition 6.1.1 will be used in the proof of theorem
6.3.6.

Lemma 6.1.3 In a cpo-enriched CCC pairing and currying are continuous.

PROOF. We consider the case of currying only (the argument is similar for pairing,
which has to be established first). In order to prove A(\/ A) = V{A(S) | f € A},
it is enough to check that \/{A(f) | f € A} satisfies the characterizing equation:

@2<A>S:m3x§u<>.

The monotonicity of A guarantees that {A(f) | f € A} is directed. Hence by
continuity of composition and pairing we have:

Si<§g_\mbvx&vu<?ei>§x§:mku<>. .

The following definition was first given by Berry [Ber79].

Definition 6.1.4 (least fixpoint model) A least fizpoint model is a cpo-enri-
ched cartesian closed category where 2 and Y are interpreted as follows:

;o Bl=1 = VDprsra,

n<w

where M"Q = M(--- (MQ)---), n times.

The fact that the sequence of the [Af.f*Q]’s is increasing follows from the as-
sumptions of monotonicity in the definition of cpo-enriched CCC.

Proposition 6.1.5 In a least firpoint model, the (Y)-rule is valid.

PROOF. Exploiting the continuity of the composition and pairing, we have:

[y M] evo(V, AL M) =V, M)
[MIYM)] = evo([M],V,IM"Q]) Vo [M™10] . a]

Proposition 6.1.6 Cpo is a cpo-enriched CCC. In particular, for any cpo D,
Fig : (D — D) — D, defined by Fiz(f) = Vrew FH(L), is continuous.

Proor. Notice that in a category with enough points, the interpretation of Y
given in definition 6.1.4 is precisely Fiz. O

Ii
Ii

In chapter 2 we have seen so-called fixpoint combinators (cf. example 2.1.11
and exercise 2.1.16). Thus, the AY-calculus can be simulated in the untyped A-
calculus. But the semantics of AY-calculus is easier, since it involves only fixpoints
of functions, not domain equations (cf. chapter 3).

126 The Language PCF

Exercise 6.1.7 Consider the eztension of the simply typed A-calculus with a collection
of constants Y, (n > 0) and rules:

(V) You1M — M(Y,M) .

Prove that the system obtained by adding these rules to the S-rule is strongly normaliz-
ing. Hint: Adapt the proof of theorem 2.2.9.

Exercise 6.1.8 Let C be a cpo-enriched cartesian-closed category such that currying
is strict, i.e., A(L) = L. Adapt the definition of Béhm tree given in chapter 2 to the
AY -calculus by setting w(AZY My ... My) = (p > 1). Show that the following holds:

[M] = \/{lw(N)] | M —* N}.

Hints: Extend the meaning function by setting: [Yn] = [M.f"Q]. Show that [M] =
Vool Mn], where My, is obtained from M by replacing all its occurrences of Y by Yn.
Consider the normal form Ny of M,. Show that it is the result of replacing all the
occurrences of Y by Yy in a reduct N of M, and use the strictness assumptions to show

Vol = [w(M)]-

Exercise 6.1.9 A class of continuous functionals Fp : (D — D) — D, ranging over
all cpo’s D, is called o fizpoint operator if Fp(f) is o fizpoint of f, for any D and
f D — D. Moreover, it is called uniform if the following holds:

Vf:D—>D,g:E—Eh:D—FE (hof=goh= h{Fp(f))=Fplg),

where h is supposed strict. Show that Fiz is the unigue uniform fizpoint operator.

The following exercise, based on [HP90], shows that fixpoints cannot coexist
with coproducts in a cartesian closed category.

Exercise 6.1.10 We say that a category C with a terminal object 1

e has fizpoints if for every A and f : A — A there exists a morphism Y(f):1 - A
such that f oY (f) =Y (f);

o is inconsistent if all objects in C are isomorphic to 1.

(1) Show that any cartesian closed category that has an initial object 0 and fizpoints
is inconsistent. Hints: Consider Y(idg), and use ezercise A2.7.4. (2) Show that any
cartesian closed category that has binary coproducts and fixpoints is inconsistent. Hints:
Show that the two injections, call them tt and ff, from 1 to 2 = 1+ 1 are equal, by
“4mplementing’ in the categorical language the following reasoning (where — = [ff, tt] :
2—-2):

Y (=)
il

it

il
it

(Y(=) or =(¥(=))
(Y(=) and Y(-))

(Y(=) or Y(-))
(Y(7) end ~(Y(7)))

i
il
i

(In [HP90], incompatibility with equalizers and with o natural number object is also
proved.)

6.2 Fizpoint induction 127

6.2 Fixpoint induction

A key motivation for denotational semantics lies in its applications to the proof
of properties of programs. An important tool is fixpoint induction. If we want to
show that a property P holds of a term Y M, then, knowing that the meaning of
Y M is the lub of the sequence L, F(L), F(F(L)),..., where F is the meaning of
M, it is enough to check the following properties.

¢ The (meaning of) property P, is an w-subdcpo of the domain D associated
to the type of Y M, ie., P is closed under lub’s of non-decreasing chains; such
predicates are called inclusive.

* Both properties L € P and Vz(z € P = F(z) € P) hold.
This is summarized by the following inference rule, known as the fixpoint

induction principle

Pinclusive L €P Vz (z€P = F(z)€P)
Fiz(FyeP ’

where P C D, for a given cpo D, and F : D — D is continuous. Such an inference
rule is a step towards mechanizing proofs of programs. What is needed next is a
formal theory for proving that some predicates are inclusive (see exercise 6.2.2).

Remark 6.2.1 The sufficiency of the above conditions, hence the validity of fiz-
point induction, follows immediately from the Peano induction principle on natural
numbers. Thus, mathematically speaking, it is not strictly necessary to formulate
the above principle explicitly. One can prove L € P, F(L) € P, F(F(L)) € P,...
and use Peano induction to conclude (if P is inclusive). The interest of stating
an explicit induction principle is to enable one: (1) to write Lighter proofs, as
F(z) is easier to write than F(F(...(L)...)); and (2) to insert it in @ mechanical
proof-checker like LCF [Pau87].

Exercise 6.2.2 (1) Let D be a cpo. Show that § and D are inclusive predicates in D.
Show that z = z and © < y are inclusive in D x D. (8) Let D and E be cpo’s and
f: D = E be continuous. Let R be inclusive in E. Show that F7HR) is inclusive.
(8) Let D be a cpo and P, Q be inclusive in D. Then show that PN Q and P U Q are
inclusive. (4) Let D and E be cpo’s and R be inclusive on D x E in its first argument.
Show that the predicate Vy (zRy) is inclusive on D. (5) Let D and E be dcpo’s and
P, Q be inclusive in D, E respectively. Show thdt P x Q is inclusive in D X E, and that
P — Qs inclusive in D — E, where P — Q= {f: D — E|YdeP f(d) e Q}.

As an illustration, we carry out in some detail the proof of the following propo-
sition, due to Beki€, which shows that n-ary fixpoints can be computed using unary
fixpoints.

Proposition 6.2.3 Let D,E be cpo’s and f : DXE —» D, g: DX E — E
be continuous. Let (zo,yo) be the least fizpoint of (f,g). Let z; be the least
fizpoint of f o (id, h), where h = Fiz o A(g) : D — E (hence h(z) is such that
9(z1, h(21)) = h(z1)). Then zo =z, and yp = h(z;).

128 The Language PCF

PROOF. (z0,%0) < (21, h(z1)). Define the predicate Q(u, v) as (u,v) < (1, h(z1)).
This is an inclusive predicate (see exercise 6.2.2). Thus we may start the fixpoint
induction engine. The base case is obvious. Suppose that (u, v) < (z:, h(z1)). We
want to show that f(u,v) < z; and g(u,v) < h(z;). By monotonicity we have
f(u,v) < f(z1, h(z1)) and g(u,v) < g(z1, hz,)). But f(z1, h(z1)) = =, since z;
is a fixpoint of f o (id, k). This settles the inequality f (u,v) < z,. By definition
of h, we have h(z1) = g(z1, h(z:)), which settles the other inequality.

(z1, h(21)) < (20, %0) . We define a second predicate R(u) as (u, h(uw)) < (z0,%0).
We leave the base case aside for the moment, and suppose that R(u) holds. We
have to prove R(f(u,h(u))). We have f(u,h(u))) < f(zo,y0) = zo by mono-
tonicity, and by definition of (zg,30). We need a little more work to obtain
h(f(u, h(u))) < yo. It is enough to check h(z) < yo. We define a third inclusive
predicate S(u) as u < yo, remembering that h(zo) is the least fixpoint of A(g)(zo).
The base case is obvious. Suppose that u < 3. Then 9(zo,u) < g(z0,%) = %0
Hence fixpoint induction with respect to S allows us to conclude h(zo) < yo. We
are left with the base case with respect to R: (L, h(L)) < (zo,10) follows a for-
tiori from h(zg) < 3. a

In this proof: we have focused in turn on each of the least fixpoint operators
involved in the statement, exploiting just the fact that the other least fixpoints
are fixpoints.

6.3 The programming language PCF

Scott [Sco93], and then Plotkin [Plo77], introduced a simply typed AY-calculus,
PCF, which has become a quite popular language in studies of semantics. It has
two basic types: the type ¢ of natural numbers, and the type o of booleans. Its
set of constants is given in figure 6.1. The language PCF is interpreted in Cpo
as specified in figure 6.2 (for the interpretation of © and Y, cf. definition 6.1.4).
We use the same notation for the constants and for their interpretation. This
interpretation is called the continuous model of PCF. More generally, we define
the following notion of standard model.

Definition 6.3.1 (standard model) Let C be a least fizpoint model. If we in-
terpret v and o by objects D* and D° such that C[1, D*] and C[L, D] are (order-
isomorphic) to wy and By, if the basic constants are interpreted as in figure 6.2,
and if the first order constants behave functionally as specified in figure 6.2 (re-

placing, say, succ(z) by evo(succ, z)), then we say that we have a standard model
of PCF.

Recall that if C has enough points (cf. definition 4.5.4), then the model is
called extensional.

Definition 6.3.2 (order-extensional) Let C, D*, and D° be as in definition
6.3.1. Moreover, suppose that C has enough points and that the order between
the morphisms is the pointwise ordering, as in Cpo. Then the model is called
order-extensional.

6.3 The programming language PCF 129
n T (n € w)
i, i 1o
succ, pred >y
zero? L—o

if then else :0— i — -y
if then else :0—0-—-o0-—0

Q 1o for all &
Y {o—=0)—=0o foralle

Figure 6.1: The constants of PCF

D°=B, where By = {1, #, f}
Db =w, flat domain on natural numbers
DT =D — 0 DT exponent in Cpo

ms%vuf io=d s@%vuf fo=1lorz=0

z+1 ifx# L z—1 otherwise
§
L ifz=1 1 ifz=1
zero?(z) =< tt ifz=0 if s thenyelsez={ y ifz=t
ff otherwise z ifz=f

Figure 6.2: Interpretation of PCF in Cpo

Operational semantics of PCF. We equip PCF with an operational seman-
tics which is adequately modelled by any standard model. It is described in figure
6.3 by means of a deterministic evaluation relation — op-
Exercise 6.3.3 Let add; = Y (\fzy.if zero?(z) then y else succ(f(pred(z))y)). Com-.
pute add; 43 using the rules in figure 6.3.

Exercise 6.3.4 Imitate the techniques of chapter 2 to establish that the rewriting sys-
tem — specified by the eight azioms of figure 6.2 (applied in any contert) is confluent,
and that if M —* N and N is a normal form, then M —%p N. Hint: Prove suitable
versions of the standardization and Church-Rosser theorems presented in chapter 2.

Next we investigate the relationships between the denotational and the oper-
ational semantics of PCF.

l - :\ ‘!,

130 The Language PCF

(M. M)N -, M[N/z]
2ero?(0) —op Bt zero?(n + 1) —op ff
succ(n) —gp n+1 pred(n+1) Do n

if tt then N else P —,, N if ff then N else P —,, P

YM =05 M(Y M)

M -, M M =y M
MN —,, M'N if M then N else P —,, if M’ then N else P

M —op M’
f(M) —op \.QSJ

(for f € {succ, pred, zero?})

Figure 6.3: Operational semantics for PCF

Definition 6.3.5 (PCF program) We call programs the terms of PCF which
are closed and of basic type.

For example, (Az.z)3 and add; 43 (cf. exercise 6.3.3) are programs.

Theorem 6.3.6 (adequacy) Any standard model C of PCF is adequate, i.e.,
for all programs of type v (and similarly for type o):

(3n P—i,n) e [Pl=n.

ProOF. (=) This follows by soundness of the continuous model.

(«) We use the notation of section 4.5, and write D’ = C[1, D’]. The induction
on types comes into play by a definition of a family of so-called adequacy relations
R? C D? x PCF?, for each type o, where PCFY is the set of closed terms of type
o. Here is the definition of these (logical-like) relations (R° is analogous to R*):

R {z,M)|z=_Lor(z=nand M —},n)}
Re= = {{f,M)|Ve,N (eR° N = evo(f,e) R" MN)}.

The statement is a part of the following claim.

Claim. For each provable judgment 1 : ¢1,...,Z : on + M : o, for each n-tuple
(d1, M1);.. ., (dn, Ny) such that d; R% N; for 1 =1,...,n, we have:

F\w.”WT§=OA&f....&ﬁvﬂNQg_HZH\HT....Z:\HL .

We set M’ = M{Ny/z1, ..., No/zys], etc. We proceed with the simplest cases
first.

o M =gz; Then [M]o(dy,...,dn) =d;, and M[Ni/z1,..., No/zn] = N;, hence
the sought result is d; R N;, which is among the assumptions.

6.3 The programming language PCF 131

¢ M = NQ. By induction [N]o{(d,,...,d,) R?~" N’ and [Qlo{dy,...,d) R Q'.
By definition of R*™7, evo ([N]o{(dy,...,d,),[@] o (di, ... dn}) RTN'Q, e,
[M}o{di,...,dn) R™ M.
¢ M = Az.Q). We have to show, for each d R N:

evo([M]o(d,... dn),d) R"M'N ie. [Q]o(dy,...,dn,d) R™ (Az.Q)N.

By induction we have:
[@o{ds,... ,dn,d) R™ Q[Ny/z1, .. . Nufz,, N/z] .

Since (Az.Q)N —,, Q[N1/z1,...,No/2s, N/z], we can conclude provided the
following property holds, for all o .

(@) fRRMand M' -, M = fR° M.

® M =n. In this case, n R* M holds trivially. Similarly for ¢ and fF.
* M = succ. Let d R* P. We have to show ev o (succ,d) R* succ(P). There are
two cases: .

d= 1. Then ev o (succ,d) = ev o {succ, 1) = L

d=n. Then ev o (succ,d) =n-+1.
In both cases ev o (succ,d) R* succ(P). The reasoning is similar for pred, zero?,
and if then else. .
e M =Y. We have to show [Y] Rl=9)=9 Y, that is, ev o ([Y], g) R® Y M, for
all g R7~7 M. We assume the following properties (cf. inclusive predicates), for
all (fixed) o, M: ,

(@) LR M

(@3) {fn}n<w non decreasing implies (Vn f, R® M) = (Voo fn) R7 M.

By (Qs3), the conclusion follows if we show:
evo ([Af.f"Q),g) R°YM (for all n) .

We set d, = ev o ([Af.f"Q],). Since dn = [f"Q o0 g, we have dpy; = ev o (g,d,)
for all n. Therefore, we only have to show:

(1) doR7YM. Since do = [o g, this follows from (Q,) and from the left
strictness of composition.

(2) (dR7YM) = (evo(g,d)R°YM). Since g R°=° M by assumption, we have
ev o (g,d) R? M(Y M), and the conclusion then follows by (Q;).

Properties (Q1) and (Qs) are obvious at basic types. For a type ¢ — 7, (Q1)
follows by induction from the inference: (M’ —,, M) = (M'N —,, MN) and
(Q2) follows from the strictness equation ev o (1, d) = L. Property (Q3) follows
at basic types from the fact that non-increasing sequences are stationary in a flat
domain, and at functional types from the preservation of limits by continuity.
This completes the proof of the claim. a

Remark 6.3.7 The adequacy relations used in the proof of theorem 6.8.6 combine
ideas from the computability technique (cf. theorem 3.5.18, remark 3.5.1 7, and
remark 4.5.2) and from the inclusive predicates technique (cf. section 6.2).

i

132 The Language PCF

6.4 The full abstraction problem for PCF

In general, given a programming language, the specification of the operational
semantics is given in two steps:

(1) Evaluation: a collection of programs is defined, usually a collection of closed
terms, on which a partial relation of evaluation is defined. The evaluation is
intended to describe the dynamic evolution of a program while running on an
abstract machine.

(2) ,Observation: a collection of admissible observations is given. These obser-
vations represent the only means to record the behavior of the evaluation of a
program.

In this fashion, an observational equivalence can be defined on arbitrary terms
M and N as follows: M is observationally equivalent to NV if and only if whenever
M and N can be plugged into a piece of code P, so to form correct programs
P[M] and P[N], then M and N are not separable (or distinguishable) by any
legal observation. On the other hand any interpretation of a programming lan-
guage provides a theory of program equivalence. How does this theory compare
to observational equivalence? We will say that an interpretation (or a model) is
adequate whenever it provides us with a theory of equivalence which is contained
in the observational equivalence. Moreover, we call an adequate model (equation-
ally) fully abstract if the equivalence induced by the model coincides with the
observational equivalence.

In section 3.2, we discussed a full abstraction result for Dy, models. There, all
terms were considered programs, and the observation was the existence of a head
normal form. In this section, we discuss the situation for PCF. We have defined
the programs as the closed terms of basic type. We have defined an evaluation
relation —,,. What can be observed of a program is its convergence to a natural
number or to a boolean value. The principal reason for focusing on programs is
that they lead to observable results. This stands in contrast with expressions like
Az.z, which are just code, and are not evaluated by —,, unless they are applied to
an argument, or more generally unless they are plugged into a program context.
A program context for a PCF term is a context C (cf. definition 2.1.6) such that
C|M] is a program.

Definition 6.4.1 (observational preorder) We define a preorder <o, called
the observational preorder, between PCF terms M, N of the same type, as follows:

M <as N & VC (CIM] =5, ¢ = C[N] =3, 0),

where C ranges over all the contexts which are program contexts for both M and
N, and where c::=n | tt | ff.

Remark 6.4.2 By ezercise 6.3.4 and by theorem 6.3.6, equivalent definitions for
Sobs ar€:

M<us N & YC (CIM]—>*c = C[N]—-*¢)

M <N & vC (ICIM]] < [CINI]) -

6.4 The full abstraction problem for PCF 133

Ummiﬁoc 6.4.3 (fully abstract) A cpo-enriched CCC is said to yield an in-
equationally fully abstract (fully abstract for short) model of PCF if the following
equivalence holds for any PCF terms of the same type:

M <ps N & [M]<[N].

It is a consequence of the adequacy theorem that the direction (<) holds for
the continuous model (and in fact for any standard model). But the converse
direction does not hold for the continuous model. There are several proofs of this
negative result, all based on a particular continuous function por: By xB, —- B,
defined by:

tt fe=tory=tt
por(z,y)={ § fz=ffandy=f

L otherwise .

(1) Plotkin first proved that the continuous model is not fully abstract. He gave
the following terms, both of type (0 — 0 — 0) — o: .

My = Ag.if Py then if P, then if Py then Q else it else Q) else Q
My = Ag.if Py then if P, then if Ps then Q else ff else Q) else § ,

where P, =gttQ, P,=gQtt, and P = g ff ff. These ﬁmd.um are designed in such
a way that:

tt = [Mi](por) # [My](por) = f .

On the other hand M; =, M,. This is proved thanks to two key syntactic
results:

(a) Milner’s context lemma [Mil77]. This lemma, proposed as exercise 6.4.4,
states that in the definition of <, it is enough to let C range over so-called
applicative contexts, of the form []N; ... N,. Applying this lemma to My, M,, we
only have to consider contexts [[N. By the definition of —op, We have for i = 1, 2:

NtQ -3, tt
[MN —pc= < NQut -3 i
NFF -1

(b) Thereisno N such that N £ Q —op th, NQ it =5, ttand N ff f —%, ff. This
result is a consequence of the following more general result. PCF is a sequential
language, in the following sense: If C is a program context with several holes, if

[FCI,....0l =L and 3Mi,...,M, [FC[My,..., M,]] # L,
then there exists an ¢ called a sequentiality index, such that
YNy, Niot, Nigty o, N [FC[Ny, oo Nieg, €, N, oo NoJ = L

This result is an easy consequence of (the PCF version of) Berry’s syntactic se-
quentiality theorem 2.4.3 (see exercise 6.4.5) and of the adequacy theorem 6.3.6.
Here, it is applied to C' = N[][], observing that we can use N ff ff —op I to
deduce that there is no ¢ such that NQQ -3 c.

134 The Language PCF

Another way to prove the non-existence of N is by means of logical relations.
We have treated essentially the same example when we discussed Very Finitary
PCF (cf. section 4.5).

{2) Milner has shown that in an extensional standard fully abstract model of PCF,
the interpretations of all types are algebraic, and their compact elements must be
definable, i.e., the meaning of some closed term. This is called the definability
theorem (for a proof, we refer to [Cur86]). One can use this result to cut down
the path followed in (1) and go directly to step (b). In reality, there is no cut
down at all, since the proof of the definability theorem uses the context lemma,
and exploits terms in the style of My, Ms.

Exercise* 6.4.4 (context lemma) Let M and M’ be two closed PCF terms of the
same type such that, for all closed terms Ny,..., Ny such that MN;--- Ny, is of basic
type, the following holds:

MN;y-- Ny —5,¢c = MN--Np—

Show that M <5 M’, by induction on (length of the reduction C[M] —%p C size of
ClmM]).

Exercise 6.4.5 (syntactic sequentiality for PCF) Prove the PCF version of the-
orem 2.4.3, and show the corresponding corollary along the lines of exercise 2.4.4.

The converse of the definability theorem also holds, and is easy to prove.

Proposition 6.4.6 If C is an order-extensional standard model of PCF in which
all C[1,D°)’s are algebraic and are such that all their compact elements are de-
finable, then C is fully abstract.

PROOF. Suppose that M <, M’. It is enough to check [M](d) < [M'](d) for
all compact d= dy - - -d,. Then the conclusion follows using contexts of the form
[Ny -+« Ny o

Exercise 6.4.7 (uniqueness) Show, as a consequence of proposition 6.4.6 and of the
definability theorem, that all order-extensional standard models of PCF are isomorphic
(in a suitable sense).

In fact, this (unique) fully abstract model exists, and was first constructed by
Milner (essentially) as a quotient of the term model of PCF. (see section 6.6, and
in particular remark 6.6.11). Since then, lots of efforts have been made in order
to provide ‘more semantic’ constructions of this model (this is known as the full
abstraction problem for PCF [BCL85]). In particular, the non-definability of por
prompted the study of sequentiality, which is the subject of section 6.5 and of
chapter 14. A weaker notion, stability, appeared on the way, and is the subject
of chapter 12. By ‘more semantic’ constructions, the contributors in this area
certainly meant at least the following two informal requirements:

(1) The model should consist explicitly of cpo’s of a certain sort and of functions
or function-like morphisms of a certain sort.

6.5 Towards sequentiality 135

(2) The model should throw some light on the operational preorder of PCF. In
particular, it was hoped to show that the operational preorder for PCF could be
shown to be effectively presented.

As regards the last point, we now know that there is no hope: Loader has
proved that the observational preorder on Finitary PCF is undecidable [LoadT].
But not all efforts have been lost: the sequential model of chapter 14 is fully
abstract for an extension of PCF with a family of control operators (see section
14.4). The stable and sequential models are also interesting for other reasons. For
example, stability is at the root of linear logic (see chapter 13).

Exercise 6.4.8 Show that the undecidability of the observational equivalence for Fini-
tary PCF implies the undecidability of the definability problem for Finitary PCF (cf.
section 4.5).

Remark 6.4.9 Gunter has proposed a simple semantic proof of My =y Ms. In
the stable model of PCF, to be defined in chapter 12, one retains only functions
which satisfy the following property (specified here for a type like 0 X 0 — 0):

Vz fz)#L1 = 3y minimums.t (y<zand fly)#1).

In particular, por is rejected (take z = (tt,tt), then (L, tt) and (tt, L) are both
minimal, but there is no minimum), and as a consequence we have [Mi] = [Ms].
Now, because the direction (<) holds for the stable model, which is standard, we
have \KD =obs NK.N.

6.5 Towards sequentiality

We have already pointed out that the A-calculus is sequential (theorem 24.3). In
sections 4.5 and 6.4, we have exhibited examples of inherently parallel functions
that are not definable in a (finitary version of) PCF. In this section, we give
further evidence of the sequential nature of PCF. We define sequential functions
in a restricted setting, which will be extended in chapter 14. We show that the

» compact definable first order functions of the continuous model of PCF are exactly

the (compact) first order sequential functions.
But before we engage in the semantic investigation of sequentiality, we should
mention that another approach to full abstraction is to stick to the continuous

‘model and seek a suitable extension of PCF for which the continuous model is

fully abstract. Such a simple extension exists, as was first shown by Plotkin,
who added a parallel conditional to PCF [Plo77). Later it was shown in [Cur86)
that the more natural extension of PCF with a constant por (with the rules
por T W —op tE, por tt T —4p tt and por ff [f —4p ff) has the continuous model
as fully abstract model. The proof goes via definability (cf. proposition 6.4.6).
Plotkin has also given a strengthened form of definability: if the language is further
extended with a parallel existential operator, then the language is universal for
the continuous model, i.e., every computable element of the model (cf. definition
1.1.17) is definable (see [Plo77] for details, and see remark 14.4.18 for a similar,
more satisfactory result in a sequential framework).

