70 Do models and intersection types

Exercise 3.5.22 (1) Show that the logical approzimation theorem .&E holds, ﬂ%.?.os“:‘m
the type system DS by the type system of figure 3.2. (Warning: this involves 3.52&.36
a number of syntactic lemmas, typically lemma 3.5.9.) (2) Show the mﬁﬁ‘ﬁoe‘sﬂ:nﬂcz
theorem for the Do, model based on Dy = {1, T} and the standard pair (io, jo), i.e.,
[M] =V{[A] | A < BT(M)} (cf. exercise 3.8.14 and theorem 38.4.8).

4
Interpretation of A\-calculi in CCC’s

In first approximation, typed A-calculi are natural deduction presentations of cer-
tain fragments of minimal logic (a subsystem of intuitionistic logic). These calculi
have a natural computational interpretation as core of typed functional languages
where computation, intended as Bn-reduction, corresponds to proof normalization.
In this perspective, we reconsider in section 4.1 the simply typed A-calculus stud-
ied in chapter 2. We exhibit a precise correspondence between the simply typed

-calculus and a natural deduction formalization of the implicative fragment of
propositional implicative logic.

Next, we address the problem of modelling the notions of Bn-reduction and
equivalence. It turns out that simple models can be found by interpreting types
as sets and terms as functions between these sets. But, in general, which are the
structural properties that characterize such models? The main problem considered
in this chapter is that of understanding what is the model theory of simply typed
and untyped A-calculi. In order to answer this question, we introduce in section
4.2 the notion of cartesian closed category (CCC). We present CCC’s as a natural
categorical generalization of certain adjunctions found in Heyting algebras. As a
main example, we show that the category of directed complete partial orders and
continuous functions is a CCC.

The description of the models of a calculus by means of category theoretical
notions will be a central and recurring topic of this book. We will not always
fully develop the theory but in this chapter we can take advantage of the sim-
plicity of the calculus to go into a complete analysis. In section 4.3, we describe
the interpretation of the simply typed A-calculus into an arbitrary CCC, and we
present some basic properties such as the substitution theorem. The interpreta-
tion into a categorical language can be seen as a way of implementing o-renaming
and substitution. This eventually leads to the definition of a categorical abstract
machine.

In section 4.4, we address the problem of understanding which equivalence is
induced on terms by the interpretation in a CCC. To this end, we introduce the
notion of A-theory. Roughly speaking, a A-theory is a congruence over A-terms
(i.e., an equivalence relation closed under A-abstraction and application) which
includes fn-equivalence. It turns out that every CCC induces a A-theory. Vice
versa, one may ask: does any A-theory come from the interpretation in a CCC?
We answer this question positively by showing how to build a suitable CCC from

} _

72 Interpretation of A-calculi in CCC’s

any Mtheory. This concludes our development of a maodel theory for the simply
typed A-calculus. Related results will be presented in chapter 6 for PCF, a simply
typed A-calculus extended with arithmetical operators and fixpoint combinators.

In section 4.5 we introduce logical relations which are a useful tool to establish
links between syntax and semantics. In particular, we apply them to the problem
of characterizing equality in the set theoretical model of the simply typed A-
calculus, and to the problem of understanding which elements of a model are
definable by a A-term. .

In section 4.6 we regard the untyped A-calculus as a typed A-calculus with a
reflezive type. We show that every CCC with a reflexive object gives rise to an
untyped A-theory. We present a general method to build a category of retractions
out of a reflexive object in a CCC. We give two applications of this construction.
First, we hint at the fact that every untyped A-theory is induced by a reflexive
object in a CCC (this is similar to the result presented in section 4.4 for the simply
typed A-calculus). Second, following Engeler, we adopt the category of retractions
as a frame for embedding algebraic structures in A-models.

This chapter is mainly based on [LS86, Sco80, Cur86] to which the reader
seeking more advanced results is directed.

4.1 Simply typed A-calculus

In chapter 2, we have presented a simply typed A-calculus in which every subterm
is labelled by a type. This was well-suited to our purposes but it is probably
not the most illuminating treatment. So far, we have (mainly) discussed the A-
calculus as a core formalism to represent functions-as-algorithms. The simply
typed A-calculus receives an additional interpretation: it is a language of proofs
for minimal logic. Let us revisit simple types first, by considering basic types as
atomic propositions and the function space symbol as implication:

At
a

K|
At](oc—0a).

Forgetting the terms for a while, we briefly describe the provability of formulas
for this rudimentary logic. We use a deduction style called natural deduction

[Pra65]. A formula o is proved relative to a list 01,...,0% of assumptions. The
formal system described in figure 4.1 allows us to derive judgments of the form
o1,...,0n I o, which are called sequents.

An important remark with a wide range of possible applications [How80] is
that proofs in natural deduction can be encoded precisely as A-terms. To this
aim hypotheses are named by variables. Raw terms are defined by the following
syntax (in the following, we feel free to be sparing with parentheses):

v T _ .

_@ ..
M z=v|Mw:ocM|MM.

i

A contest I" is a list of pairs, z : ¢, where z is a variable and o is a type, and
where all variables are distinct. We write z : ¢ € T to express that the pairz: o

4-1 Simply typed A-calculus 73
1<:<n O1y..,0n,0 7 9. Onbo =7 01,000
O1,...,0p oy 01,00 — 1 OlyeeyOp b T

Figure 4.1: Natural deduction for minimal implicative logic

A z:o€ll
(Asmp) T'kz:0

Te:ob-M: T

T'FM: T'FN:
T'FX@:ioM:ic—-1 (=E) T r

I'-MN: 7

(—=1)

Figure 4.2: Typing rules for the simply typed A-calculus

wQ.EH.m in I'. A judgment has the shape I'- M : 0. Whenever we write T F M : o
it is Eﬁm.bama that the judgment is provable. We also write M : o to say ﬁmmd
there exists a context I' such that T - M : . A term M with this property is
called well-typed. Provable Jjudgments are inductively defined in figure 4.2 M\,\m
may omit the labels on the A-abstractions when the types are obvious WoE the
context. It is easily seen that any derivable Judgment admits a unique derivation
thus yielding a one-to-one correspondence between proofs and terms. _

Yet another presentation of the typing rules omits all type information in the
.\/-SHBm. .1,2‘5 corresponding typing system is obtained from the one in figure 4.2
by removing the type ¢ in Az : ¢.M. In this case a term in a given context omHu
be given several types. For instance the term A\z.z can be assigned in the empty

OOHHﬂmunﬁ m_\d.v ﬂvwm g — ag, %.OH m.d.(ag. HO sumimarize, we HHNLCQ OCHHMHANGHOAM EZHQO
}

MHWV A totally explicit typing where every subterm is labelled by a type (see section

(2) A more economic typing, where only the variables bound in abstractions are
labelled by a type. This style is known as ‘typing & la Church’.

(3) A type assignment system, where an untyped term receives a type. This is
known as ‘typing 4 la Curry’.

In the first system, the term itself carries all the typing information. We note
that once we have labelled free variables and A-abstractions, the label of each
subterm can be reconstructed in a unique way. In the two mﬁpmw systems, & la,
O?.ﬁow and & la Curry, a separate context carries type information for ﬁw“m free
variables. In the system & la Church, the context together with the types of bound

74 Interpretation of A-calculi in CCC’s

variables carry all the necessary information to reconstruct uniquely the type of
the term. In the system & la Curry, a term, even in a given context, may have
many types. In general, the problem of deciding if an untyped A-term has a type
in a given context is a non-trivial one. This is referred to as the type inference or
type reconstruction problem.

Type reconstruction algorithms are quite relevant in practice as they relieve
the programmer from the burden of explicitly writing all type information and
allow for some form of polymorphism. For the simply typed discipline presented
here, it can be shown that the problem is decidable and that it is possible to
represent by a type schema (a type with type variables) all derivable solutions
to a given type reconstruction problem [Hin69]. On the other hand, the type
inference problem turns out to be undecidable in certain relevant type disciplines
(e.g., second order [Wel94]).

In this chapter, we concentrate on the interpretation of A-terms with ezplicit
type information. We regard these calculi & la Church as central, by virtue of
their strong ties with category theory and proof theory. The interpretation of
type assignment systems has already been mentioned in chapter 3, and it will be
further developed in section 15.3.

Exercise 4.1.1 Let M? be o totally ezplicitly typed term. Let z3*,...,x5" be its free

variables. Let erase be the function that erases all type information in & A-term. Show
that 3 @ 01,...,%p & O - erase(M) : o is & la Curry derivable. Define a function
semi-erase such that T : g1,..., Ty : oy - semi-erase(M) : o is & la Church derivable.
Conversely, from a derivation é la Curry of ©1 : 01,...,%n : 0 b M : o, construct
a totally explicitly typed term N°, whose free variables are x7*,...,z5", and such that
erase(N°) = M. Design a similar transformation from a derivation & la Church.

Investigate how these transformations compose.

Exercise 4.1.2 Show that the structural rules of exchange, weakening, and contraction
are derived in the system above, in the sense that, if the premises are provable, then the

conclusion is provable.

(exch) Tyz:oy:7,I'FM:p = Ty:mz:0,'FM:p
(weak) T'FM:7andz:0¢l = Liz:obM:7
(contr) T,z:oy:ob-M:T = T,z:0F Mlz/z,z/y]: 7 (z fresh) .

We consider two basic axioms for the reduction of terms (cf. section 2.1):

(8) (A\z:0.M)N — M[N/z
(n) dz:o(Mz)— M ifzé¢ FV(M).

We denote with —p, their compatible (or contextual) closure (cf. figure 2.4), and
with —%, the reflexive and transitive closure of —gy.

Exercise 4.1.3 (subject reduction) Show that well-typed terms are closed under re-
duction, formally:
(T+-M:0and M —g; N) = I'FN:o.

and that if M® and N7 are the totally ezplicitly typed terms associated to M and N (cf.
ezercise 4.1.1) then M® reduces to N (cf. définition 2.2.7).

4.2 Cartesian closed categories 75

Theorem 4.1.4 (confluence and n izati
heo . ormalization) (1) The reducti 1
—py, s confluent (both on typed and untyped A-terms). : o relation

(2) The reduction system —pn 15 strongly normalizing on well-typed terms, that

s, f M : o then all reduct ;
iy acl reauction sequences starting from M lead to a Bn-normal

. .,H\,\m wmé. m.meQ% Eoé.& these properties in chapter 2 for B-reduction and the
HQMW W\ mxw:o;. typed variant. The results are easily adapted to the present 2
a ﬁow setting (cf. exercise 4.1.3). The following exercise provides enough
guidelines to extend the results to Bn-reduction. s

Exercise 4.1.5 In the \GNNQg&ﬁ —=1 m T j j T f
¢
; s g eans reduction in0orl .wwmmv. Show the ollow-

(1) M —n M1 and M —, Ms, then there ezists an N such that M, lMH N and

EN lWH 2.

2) IfM . ,
MS.V IW, —n M1 and M —g My, then there ezists an N such that My —3' N and
2 = N. ?
(3) IfM —, - —g N, then M — l. N
, . or M RN
stands for 3P (M —p, P and %WE wﬁ P M where M —m, el

4.2 Cartesian closed categories

The reader will find in appendix 2 some basic notions of category theory. Next, we

motivate the introduction of ’ inati
e o OQO s as the combination of two more elementary

Example 4.2.1 (conjunction and binary products) Let us consider a sim-

ple calculus in which we ¢ ; j ; ;
ple cu an pair two values or project a pair to one of its compo-

Types At

\ﬂ — \ﬂ\ — . .
o At} (o x o)
Terms v u=zfy]--.
M u=v|(M,M)|mM | M.
This calculus corresponds to the coni 3 g
Junctive ¢ ; ;
ol s COTTE e 15 fragment of minimal logic. Its typing

]

QHNU wm EnEn?M gmw a cartesian category (ie., a category with a terminal object
and binary products) has something to do with thi i
it o) is calculus. Let us make this

(1) ém interpret a type o as an object [o] of a cartesian category C. The inter-
pretation of the type o x T is the cartesian product [o] x [r].

.va If types are objects, it seems natural to associate terms to morphisms. If M
is .NHQOmoQ term of Sx.vm 0, we may expect that its interpretation is a morphism
f:1 - [o], where 1 is the terminal object. But what about a term M such that

76 Interpretation of A-calculi in CCC’s

z:0€l (x1) I'M:0 'FN:T
TrFz:o I TH(M,N):oxT1
(xz1) I'FM:oxT (x22) 'FM:oxT

El T-mM:o E2 ThmM: 7

(Asmp)

Figure 4.3: Typing rules for a calculus of conjunction

Ty:01,...,%n : On F M : 0?7 The idea is to interpret this term as a morphism
Fo(-(xfo]) x - x[on]) — [o]

This example suggests that types can be seen as objects and terms as morphisms.
We do not wish to be more precise at the moment (but see section 3) and leave
the following as an exercise.

Exercise 4.2.2 Define an interpretation of the typed terms of the calculus of conjunc-
tion into a cartesian category.

There is a well-known correspondence between classical propositional logic
and boolean algebras: a formula is provable iff it is valid in every boolean algebra
interpretation. Heyting algebras play a similar role for intuitionistic (or minimal)
logic.

Definition 4.2.3 (Heyting algebra) A Heyting algebra H is a lattice with lub
operation V, glb operation A, greatest element 1, least element 0, and with a binary
operation — that satisfies the condition

(zA) <z iff 3<(y—2) .

Exercise 4.2.4 Heyting algebras abound in nature. Show that the collection Q of open
sets of a topological space (X,Q) ordered by inclusion can be seen as a Heyting algebra
by taking:

U—V={J{Wea|Wc(X\U)UV}.

For our purposes the important point in the definition of Heyting algebra is
that the implication is characterized by an adjoint situation (in a poset case, see
section A2.4), as for any y € H the function _ Ay is left adjoint to the function
y— -

VyeH ((Ay)4y—).

In poset categories the interpretation of proofs is trivial. For this reason Heyting
algebras cannot be directly applied to the problem of interpreting the simply typed
M-calculus. However, combined with our previous example they suggest a natural
generalization: consider a cartesian category in which each functor . x A has a
right adjoint ()4 In this way we arrive at the notion of CCC. The adjunction
condition can be reformulated in a more explicit way, as shown in the following
definition.

Il"lf

4.2 Cartesian closed categories 77

Definition 4.2.5 (CCC) A category C is called cartesian closed if it has:
(1) A terminal object 1.

(2) For each A,B € C a product gi 4 3 .
, giwven by an object A x B with 3
Ta:AXB—Aandng: AXx B — B such that: W projections

<QmO<\“Ql\:@”lem_\@”@l\»xm?ﬁ»opﬂx and tgoh=g) .
The morphism h is often denoted by (f, g), where (_,) is called the pairing oper-
ator. Other (most frequently used) notations for mq and mg are 1y and m,.

(8) For each A, B € C an exponent given by an object BA withev: BAx A — B
such that:

VOeCVf:CxA—B3h:C— BA (evo (hxid) = f) .

The morphism h is often denoted by A 3 ;
(0 v A(f), A is called the curryin
ev the evaluation morphism. \ rrng operator, and

.F H.Wm following B4 and A = B are interchangeable notations for the exponent
object in a category.

Exercise 4.2.6 Given o CCC C, extend the functions P
, rod(A,B) = A x B and
Exp(A, B) = B4 to functors Prod: C x C — C and Ezp: O%mA C vlv C. 93

mewo.wmm 4.2.7 Show that a CCC can be characterized as a category C such that the
xo.toés:m functors have a right adjoint: (i) the unigue. functor | : C — 1, (ii) the
diagonal functor A : C — C x C defined by Alc) = (¢,¢) and A(f) = (f, f), (i) the
Junctors _x A: C — G, for any object A.

.? Mm. @OmmmEm. to skolemize the definition of CCC, that is, to eliminate the
existential quantifications, using the type operators 1, (_ x _), () and the term

operators *, (,,.), A(.). In this way, the theory of CCC's can be expressed as a
typed equational theory.

Exercise 4.2.8 Show that a CCC can be characteri
. zed as a category C
following equations hold. g such that the

o There are 1€ C and x4 : A — 1, such that forall f: A—1,
() f=xa.

. ﬂ#aﬂmnﬁaﬁjhxwlbpzaﬁnmxmlmyxoﬁp:@\rmmp and (f,g) :

C—-AxB : :
van\»x\WWmﬂé\.Ql}m.le.mﬁn@%&\oﬂpzxnﬁ.l}.Q“le“
(Fst) mo(f,g) = f
Arm.ﬁ&v q_.wocavbv =g
(SP) {mioh,meoh) = h.

e There aﬂmme“m\,xblm\oﬂmz@?mmO and A :
such that for all f : C x A— B, h: C — B4, \ () Joremy £:Cx A= B,

AQSL evo A>Axv X s.&v = f
(Neat) Alevo(hxid)) = h,

where f X g = {(fomy,gomy).

78 Interpretation of A-calculi in CCC’s

Exercise 4.2.9 Referring to exercise 4.2.8 prove that (SP) is equivalent to:

(DPair) (f,gyoh = (foh,goh)
(FSI) (mym) = id,

and that (Beat) and (Neat) are equivalent to:

(Beta) evo(A(f),g) = folidg)
(DA) A(f)oh = A(fo (hx id)
(AI) Alev) = id. v

Exercise 4.2.10 Show that the following categories are cartesian closed: (1) (finite)
sets, (2) (finite) posets and monotonic functions. On the other hand prove that the
category pSet of sets and partial functions is not cartesian closed. Hint: Consider the
ezistence of an isomorphism between pSet{2 x 2,1] and pSet(2, 4].

One can now formally prove that the category of directed complete partial
orders (dcpo’s) and functions preserving lub’s of directed sets is cartesian closed
using propositions 1.4.1 and 1.4.4. Exercise 1.4.6 does not say directly that the
product construction in Dcpo yields a categorical product. This follows from the
following general (meta-)property.

Exercise 4.2.11 Let C,C' be categories, and F : C — C' be a faithful functor. Suppose
that C' has products, and that for any pair of objects A and B of C there ezists an object
C and two morphisms o : C — A and §: C — B in C such that:

F(C)=F(A) x F(B), F(a)=m, F(B)=ms,

and for any object D and morphisms f : D — A, g : D — B, there exists a morphism
h:D — C such that F(R) = (F(f), F(g)). Show that C has products. Ezplain why this
general technigue applies to Dcpo.

In a similar way one can verify that the function space construction in Dcpo
yields a categorical exponent. The check is slightly more complicated than for the
product, due to the fact that the underlying set of the function space in Dcpo is
a proper subset of the function space in Set.

Exercise 4.2.12 Let C, C' be categories, and F : C — C' be a faithful functor. Sup-
pose that the assumptions of exercise 4.2.11 hold, and use X to denote the cartesian
product in C. Suppose that C' has ezponents, and that for any pair of objects A and
B of C there ezists an object C of C, a mone m : FC — FBFA gnd a morphism
v :Cx A— B such that: (1) F(v) = evo(m x id), and (2) for any object D and arrow
f:Dx A— B, there exists a morphism k : D — C such that m o F'(k) = A(F(f)).
Show that C has ezponents. Apply this to Dcpo.

Theorem 4.2.13 (Dcpo CCC) Dcpo is a cartesian closed category. The order
for products is componentwise, and the order for ezponents is pointwise. Cpo is
cartesian closed too.

PROOF. We can apply the exercises 1.4.6 and 4.2.12. A direct proof of cartesian
closure is also possible and easy. v O

4.3 Interpretation of A-calculi 79
|

(Asmp) [z1:01,...,%0: 00 Fz;:o4)
(—1) [TFEXz:oM:0—1]
(—E) [CHMN:1]

AT,z k0])
evo([l+-M:0—17],[T+N:o])

il

Figure 4.4: Interpretation of the simply typed A-calculus in a CCC

4.3 Interpretation of)\-calculi

We explain how to interpret the simply typed A-calculus in an arbitrary CCC
Suppose that C is a CCC. Let us choose a terminal object 1, a product ?aoﬂo.
X i .O X O — C and an exponentiation functor = : C?x C — mu Then there is mw
o,US.ocm interpretation for types as objects of the category, which is determined b

.&5 interpretation of the atomic types. The arrow is interpreted as oxvosgamao%
in C. Hence given an interpretation [] for the atomic types, we have: ’

%Ql;N:i_U_E_.

.Ogmamw m.wmo,\wzm judgment of the shape z; : Olyc- Xy o b M 0. Tts
interpretation will be defined by induction on the length of the proof as a morphism
from _HZ_ to [o], whereweset I' =z, : 0,. .., 2, : 0, and [T = 1x[o1]x...x[0n]
mm_w S_z_ﬁdm,_wﬂm the convention that X associates to the left. We denote with = L
= |lof) i =1,... ism: is iterated
A SH,S.WM. y+--,n) the morphism: 73 0 0+ 07, where m, is iterated
The interpretation is defined in f
. gure 4.4. The last two rul
explanation. Suppose C = [['], 4 = [e], and B = [r]. rules need some

(1) If there is a morphism f: C x A — B th i i i
monsbiam o — en there is a uniquely determined

(—E) If there are two morphisms f:C — B%Aand g: C — A, then one

can build the morphism (f,g) : ¢ — B4 x ; i i
evo(f,g):C — A. {£,9) - x A ﬁ& composing with ev one gets

moH.bmaBmm“ we write [M] as an abbreviation for [I' - M : o). We shall most}
use ﬁ:m abbreviation when M is closed. When composing the interpretation oﬂ
the Eamggﬁ 'k M : 7 with an environment, that is, a morphism in C[t, [T]]
we will muowq use the notation [M]o(d,,...,d,) which relies on an n-ary @Ho_a:oﬂ.

In section 4.5 we will work with a simply typed A-calculus enriched with a mmm
of constants C. We suppose that each constant is labelled with its type, say c®
The typing system is then enriched with the rule: e

TrFew:io - (4.1)

We denote S.zr A(C) the collection of well-typed terms. The interpretation is
fixed by providing for each constant ¢ a morphism f, : 1 — [o]. The judgment

80 Interpretation of A-calculi in CCC’s

'k ¢7 : o is then interpreted by composing with the terminal morphism:

[Tk 0] =fol. (4.2)
The interpretation in figure 4.4 is defined by induction on the mﬁcgﬁo of a proof
of a judgment I' - M : 5. In the simple system we presented here, a Eamamsﬂ has
a unique proof. However, in general, there can be several ways Om. %Eﬁbm the same
judgment, therefore a problem of coherence of the interpretation arises, namely
one has to show that different proofs of the same judgment receive the same
interpretation. Note that in the simply typed o&o&.cm w.ﬁm coherence EoEw.B
is avoided by getting rid of the structural rules. This trick does not .mcﬁom in
more sophisticated type theories like LF (see chapter 11) where the mmHEmﬁou is
not completely determined by the structure of the judgment. In this case term
judgments and type judgments are inter-dependent.
Exercise 4.3.1 Show that [T,z : o0 - M : 7] = [T F M : 7]om T+ M : 7 and
z:0¢T (cf. ezercise 4.1.8).

N '3
Exercise 4.3.2 Given two contests I,z : o,y : 7,T¥ and T,y : 7,z : o,T \&‘m\mam an
isomorphism ¢ between the corresponding objects. Hint: IfT' = 2z : p and IV is mSﬁ.@
then ¢ = ((my o my,m2), M 0m) : (C x A) x B — (C x B) x A. Show that (cf ezercise
4.1.2):
=ﬁ.&n9@”ﬁﬁ_n§“&_H=H._é“ﬁH"Q“H<TE.“&o&.
The next step is to analyse the interpretation of substitution in a category.

Theorem 4.3.3 (substitution) Let I,z : o W M : 7, and '+ N : o. The
following properties hold.
(1) T+ M[N/z]: 7.
(2) [P-M[N/z]:7]=[0z: 0 M:7]o(id, [T F N : o]).
ProoF. (1) By induction on the length of the proof of Iz : ¢ M : 7. The
interesting case arises when the last deduction is by (—):
zioy:THFM: 7
z:okbdy:tM:7— 7

We observe (Ay : 7.M)[N/z] = Ay : 7.M[N/z]. We can apply the E.acg?m
hypothesis on ',y : 7,2 : o F M : 7 (note the exchange on the mmmﬁ\bwﬁ_onmv MO
get I,y : 7 = M[N/z] : 7' from which I' (\y : 7.M)[N/z] : 7 — 7' follows by
va L<<m will use the exercises 4.3.1 and 4.3.2 on the interpretation of Smm.WmEbm
and exchange. Again we proceed by induction on the length of the wwo& \o
[z :ob M: 7 and we just consider the case (—;). We set B = [r], B' = [r'],
C =[I, and:

H=FX:7M[N/z]:T> 7] :C— BE

g=[0,y: 7+ M[N/z]: 7] ”melm\\m

fo=[Tz:obFXy:7M:7—>7] :CxA—B \

g=[Ty:Tz:0-M:7] (CxB)xA—B

fs=['FN:o] C— A
gg=[Ty:7+N:o] :CXB— A
(CxA)yxB-B.

g=[z:0y:7EM:7]

4.8 Interpretation of \-calculi 81

'

We have to show fi = fz0{(id, f3), knowing by induction hypothesis that g, =
g2 © (id, g3). We observe that fi=A@), fo = A(g3), and g = gy o ®, where ¢
is the iso given by exercise 4.3.2. Moreover g3 = f; 0 m, (cf. exercise 4.3.1). We

then compute (cf. exercise 4.2.8):

f2o (id, f3)

Algs) o (id, f3)
A(gy o ((id, f3) x id)) .

So it is enough to show 91 =gy 0((id, f3) x id). We compute on the right hand
side: .
92 © ((id, f3) x id)

I

i

g20 @0 {(m, fy0m),m,)

= 20 & o AAQ:TQwvvﬂ.wv

= 20 ((m1,m), g3)

g2 © (id, g3) . =

]

The categorical interpretation can be seen as a way of compiling a language
with variables into s language without variables. The slogan is that varigbles
are replaced by projections, for instance BrFX:02:0— o] = A(m;). In
other words, rather than giving a symbolic reference in the form of a variable, one
provides a path for accessing a certain information in the context.! As a matter
of fact the compilation of the A-calculus into the categorical language has been
taken as a starting point for the definition of an abstract machine (the Categorical
Abstract Machine (CAM), see [CCM87]) in the style of Landin’s classical SECD
machine [Lan64] (see [Cur86] for a comparison). The purpose of these machines
is to provide a high-level description of data structures and algorithms used to
efficiently reduce A-terms. In the CAM approach, a fundamenta] ‘problem is that
of orienting the equations that characterize CCC’s as defined in exercise 4.2.8.
In the following we drop all type information and we restrict our attention to
the simulation of S-reduction (the treatment of the extensional rules raises addi-
tional problems). Hardin [Har89] has studied the term rewriting system £ + Betq
described in figure 4.5. The most important results are:

¢ & is confluent and strongly normalizing.

® &+ Beta is confluent {on & subset of categorical terms which is large enough
to contain all the compilations of A-terms).

The proof of strong normalization of € is surprisingly difficult [CHR96]. The
proof of confluence for £ + Betq uses the strong normalization property of £ and
the confluence of 4 in the A-calculus. The key connection is given by the following
fact: if M —4 N, if f and g are the compilations of M and N, then there is an A
such that f — g, h and 9 is the £ normal form of 4. The system £ takes care of

" explicitly carrying the substitution involved in the f-reduction.

Simpler results have been obtained with a related calculus called Ao-calculus
[ACCL92, CHL96]. More results on abstract machines which are related to the
CAM are described in section 8.3.

lde Bruijn conventions for the representation of variables as distances from the respective
binders (see, e.g., [ACCL92]), as well as standard implementations of environments in abstract
machines (see section 8.3) follow related ideas.

82 Interpretation of A-calculi in CCC’s

(Beta) evo (A(f),g) — fo(id,g)

(fog)oh — fo(goh)
ido f - f
T 04d - m
Ty 01d — Ty
Amv _.HOA.\.‘MQV - .\.
qGoA\.?QV - g
(figloh — (foh,goh)
A(f)oh — A(fo(hom,m))

Figure 4.5: A rewriting system for the §-categorical equations

Exercise 4.3.4 Show that two A-terms are compiled into the same categorical term if
and only if they are a-convertible (cf. section 2.1).

4.4 From CCCQC’s to A-theories and back

We study the equivalence induced by the interpretation of the simply typed M-
calculus in a CCC. It turns out that the equivalence is closed under B7-conversion
and forms a congruence.

Definition 4.4.1 (A-theory) Let T be a collection of judgments of the shape
'FM=N:osuchthatI' MM :0 and T+ N:o. T is called a A-theory if it is
closed under the rules in figure 4.6.

We note that the congruence generated by the axioms 8 and 7 is the smallest
A-theory, we call it the pure ABn theory. To every CCC we can associate a A-
theory.

Theorem 4.4.2 Let C be a CCC and let [| be an interpretation in the sense
of figure 4.4 of the simply typed A-calculus defined over C. Then the following
collection is a A-theory.

TR(C)={T+-M=N:0|TFM:,TFN:cand [+ M:0]=[C+N:0o]}.

PROOF. We have to check that Th(C) is closed under the rules presented in figure’
4.6. For («) we observe that [] is invariant with respect to the names of bound
variables (cf. exercise 4.3.4).

(B) Let [T+ (Az:0.M)N : 7] =evo(A(f),g), where f =[[,z:0+ M :7] and
g = [T+ N :g]. By the substitution theorem, [I' - M[N/z] : 7] = f o {id, g),
and (cf. exercise 4.2.9) f o (id, g) = ev o (A(f), 9).

4.4 From CCC’s to A-theories and back 83

(@) ThAz:oN:o—7 y¢ FV(N)
P'FXy:oNy/z|=Xz:0.N:0 =7

FE(Az:0oM)N: T
(B) Tz :0.M)N = M[N/z] : 7

) TEAz:o(Mz):io—r z ¢ FV(M)
THEXz:0Mz)=M:0—>1

© Pz:ob-M=N:7
TFXz:oM=Xz:0.N:0 — 71

F'FM=N:c—=71 T'FM=N":0¢

!
(appl) TFMM =NN 7

T'FM=N:ceT 'FM=N:oc z:7¢T

(Asmp) .
TFM=N:o (weak) TzirFM=N:io
'FM:o I'NM=N:¢o
ref) Tr=irs (vm) SN
TFM=N:¢6 TFN=P:¢o
t
(trans) TFM=P.o
Figure 4.6: Closure rules for a typed A-theory
(n) We have:

[CHX:0Mz:0— 7] >Ameo£ﬁs“QT?N“Q.L;%H,.GHQTHHQEV
AMevo([THM: 0 — 7] om,m))
Alevo([T'F M : 0 — 7] x id))
LFM:0—q].

For (weak) we use the exercise 4.3.1. The rules (refl), (sym), (trans) hold since

Th(C) is an equivalence. Finally, (€), (apl) follow by the definition of the inter-
pretation of abstraction and application. O

mew.ommm. 4.4.3 Show that there are infinitely many A-theories. Hints: Interpret the
atomic types as finite sets and consider the resulting A-theory. Then analyse the Bn-
normal forms of type (i — k) — (k — K).

. Next, we show how to generate a CCC starting from a A-theory. The construc-
tion mobﬂmﬁm essentially in taking types as objects of the category and (open) terms
quotiented by the A-theory as morphisms (cf. Henkin’s term model [Hen50]). It

84 Interpretation of M-calculi in CCC'’s

is convenient to work in an extended setting combining A-calculus with product
types. We take the following steps:

(1) We extend the language with constructors for terminal object and product,
as well as the relative equations:

Types At u==«x|&']...
o At|lloxoglo—o

Terms v u==z]y]...
M u=v|«|[(M,M)|[mM|[mM| :oM|MM .

i

1. Typing rules. The rules of the simply typed calculus (figure 4.2), plus the
rules for conjunction (figure 4.3), plus:

®) T

2. Equations. A theory is now a set of equality judgments closed under the
rules of the pure Afn-theory (figure 4.6) plus:

'bM:1 'HFM:.:oxT

S A N (SP) TFomdtmdly = Mo %7
F'F(M,N):0xT () PH(M,N):oxT

(1) TFm(M,NY=M: 0o Y TFmMN=N:71

(2) We associate to a theory T a CCC C(T') as follows.

1. The objects are the types of the extended language.

2. The morphisms are equivalences classes of open terms according to the equiv-
alence induced by T. More precisely:

C(TM)o,7] = {M]|3TTHM:7}
[M] = {N|dT,vr P’FM=N:7€T}.
3. The structure associated to every CCC is defined as follows (we omit the
type labels): N
(id) [Az.z]
(comp) [M]o[N]=[z.M(Nz)] (z fresh)
(term) ;= [Az.%]
(proj) 1= [Ae.mz] 7 = [Az.mex]

@E«.V MNSIIT _Z_VHT/&.AN&H«Z&VMAa?mmrv
(eval) ev = [Az.(mz)(maz)]
(curry) A([M]) = Py.rz.M(y,2)] (y,z fresh) .

4. We leave to the reader the verification of the equations associated to a CCC.

4.8 Logical relations 85

(3) Finally we have to verify that the A-theory associated to C(T) is exactly 7.
To this end one checks that:

[21:01,. ..,z 0, - M o]l =z : . Mm, 12/, .. TnnT/Tn] |,

érmﬁmﬂmé..?XQLJX...XQ:V.

We can summarize our constructions as follows.

Theorem 4.4.4 (from)-theories to CCC’s) Given any A-theory T over the
simply typed calculus with products and termanal object we can build a CCC C(T)
such that the A-theory associated to C(T) coincides with T.

Remark 4.4.5 (1) It is possible to see the constructions described here as repre-

senting an equivalence between g category of CCC’s and a category of M-theories
[L586].

(2) It is possible to strengthen the previous theorem by considering a theory T
over the simply typed A-calculus (without products and terminal object). Then one
needs to show that it is possible to add conservatively to T' the equations (x), (1),
(m2), and (SP), i.e., that adding these new equations does not allow us to prove
new equalities between two simply typed A-terms. We refer to [Cur86, chapter 1]
for a description of suitable proof techniques.

4.5 Logical relations

Logical relations are a quite ubiquitous tool in semantics and in logic. They are
useful to establish links between syntax and semantics. In this section, logical re-
lations are defined and applied to the proof of three results of this sort: Friedman'’s
completeness theorem [Fri73], which characterizes Bn-equality, and Jung-Tiuryn’s
and Sieber’s theorems [JT93, Sie92] on the characterization of A-definability.

Logical relations are predicates relating models of a given A-calculus with con-
stants A(C), defined by induction over types. To simplify matters, throughout
the rest of this section, we make the assumption that there is only one basic type
&. We define next (binary) logical relations, to this end we fix some terminology.
Recall that an interpretation of simply typed A-calculus in a CCC C is given as
soon as the basic type'x is interpreted by an object D* of C. We shall sumima-
rize this by calling the pair M = (C, D) a model. We write le] = D, hence
D°=" = D7 = Dr.

If there are constants, then the constants must also be interpreted, but we
leave this implicit to keep notation compact. We shall make repeated use of the
hom-sets of the form C[i, D). It is thus convenient to use a shorter notation. We
shall write, for any object D of C:

C[L,D)=D.

