20 The A-calculus

of the theory, and even after over 20 years it is still essential for the

intending specialist. (It does not. cover type theory.)

[Kri93] is a sophisticated and smooth introduction (originally pub-
lished in French). It covers less than the present book but treats several
topics that will only be mentioned in passing here, such as intersection-
types and Bohm’s theorem. It also treats Girard’s type-system F.

[Han04] is a short computer-science-oriented introduction. Its core

topics overlap the present book. They are covered in less detail, but
some useful extra topics are also included.

[Rév88] is a computer-science-oriented introduction demanding slight-
ly less mathematical experience from the reader than the present book
and covering less material. There are some exercises (but no answers). In
Section 2.5 there is an interesting variant of S-reduction which generates
the same equality as the usual one, and is confluent, but does not depend
on a preliminary definition of substitution.

[Tak91] is a short introduction for Japanese readers on about the same
level as the present book. It also contains an introduction to recursive
functions, but does not treat types or combinatory logic.

[Wol04] is & Russian-language textbook of which a large part is an in-
troduction to A-calculus and combinators, covering the first five chapters

_of the present book as well as some more special topics such as types.

[Rez82] is a bibliography of all the literature up to 1982 on A-calculus
and combinators, valuable for the reader interested in history. It has
very few omissions, and includes many unpublished manuscripts.

[Bet99)] is a bibliography of works published from 1980 to 1999, based
largely on items reviewed in the journal Mathematical Reviews. It is an
electronic ‘.ps’ file, for on-screen reading. (Printing-out is not recom-
mended; it has over 500 pages!)

2

Combinatory logic

2A Introduction to CL

Systems of combinators are designed to do the same work as systems
of \-calculus, but without using bound variables. In fact, the annoying
technical complications involved in substitution and a-conversion will be
avoided completely in the present chapter. However, for this technical
advantage we shall have to sacrifice the intuitive clarity of the A-notation.

To motivate corabinators, consider the commutative law of addition

in arithmetic, which says
(Vz,y) o+y = Y+

The above expression contains bound variables ‘z’ and ‘y’. But these
can be removed, as follows. We first define an addition operator A by

Alz,y) = z+Y (for all z,y),
and then introduce an operator C defined by
€)@y = fl,z) (forall f,2,9)-
Then the commutative law becomes simply
A = C(4).

The operator C may be called a combinator; other examples of such
operators are the following:

B, which composes two functions: (B(f,g))(z) = Flg(x));
B', a reversed composition operator: (B'(f,9))(z) = 9(f (x));
|, the identity operator: I =5

K, which forms constant functions: (K(a))(z) = a;

21

as COmouInatory Logic

S, astronger composition operator: (8(f,9)(z) = flz,g9(z));
W, for doubling or ‘diagonalizing’: W()(z) = f(z,z).

Instead of trying to define ‘combinator’ rigorously in this informal
context, we shall build up a formal system of terms in which the above
‘combinators’ can be represented. Just as in the previous chapter, the
system to be studied here will be the simplest possible one, with no
syntactical complications or restrictions, but with the warning that sys-
tems used in practice are more complicated. The ideas introduced in
the present chapter will be common to all systems, however.

Definition 2.1 (Combinatory logic terms, or CL-terms) Assume
that there is given an infinite sequence of expressions vy, vgo, Voo, -
called variables, and a finite or infinite sequence of expressions called
atomic constants, including three called basic combinators: LK, S (It
I, K and S are the only atomic constants, the system will be called pure,
otherwise applied.) The set of expressions called CL-terms is defined
inductively as follows:

(a) all variables and atomic constants, including I, K, S, are CL-
terms;
(b) if X and Y are CL-terms, then so is (X Y).

An atom is a variable or atomic constant. A non-reder constant is an
atomic constant other than I, K, S. A non-redez atom is a variable or a
non-redex constant. A closed term is a term containing no variables. A
combinator is a term whose only atoms are basic combinators. (In the
pure system this is the same as a closed term.)

Examples of CL-terms (the one on the left is a combinator):

((S(KS))K), ((S(Kvo))((SK)K)).

Notation 2.2 Capital Roman letters will denote CL-terms in this
chapter, and ‘term’ will mean ‘CL-term’.

‘CL’ will mean ‘combinatory logic’, i.e. the study of systems of CL-
terms. (In later chapters, particular systems will be called ‘CLw’, ‘CL&,
etc., but never just ‘CL’.)

The rest of the notation will be the same as in Chapter 1. In particular
Ty, 2, ‘v, v, ‘w’ will stand for variables (distinct unless otherwise
stated), and ‘=’ for syntactic identity of terms. Also parentheses will
be omitted following the convention of association to the left, so that
(((UVYW)X) will be abbreviated to UVW X.

2A Introduction to CL 23

Definition 2.3 The length of X (or lgh(X)) is the number of occur-
rences of atoms in X:

(a) lgh(a) = 1 for atoms a;
(b) lgh(UV) = Iigh(U) + Igh(V).
For example, if X = 2K(SSzy), then {gh(X) = 6.

Definition 2.4 The relation X occurs in Y, or X is a subterm of Y,
is defined thus:

(a) X occurs in X;
(b) if X occurs in U or in V, then X occurs in (UV).

The set of all variables occurring in Y is called FV(Y). (In CL-terms all
occurrences of variables are free, because there is no A to bind them.)

Example 2.5 Let Y = K(zS)((zSy2)(lz)). Then zS and z occur in ¥
(and 28 has two occurrences and z has three). Also

FV(Y) ={z,y,2}.

Definition 2.6 (Substitution) [U/z]Y is defined to be the result of
substituting U for every occurrence of z in Y: that is,

(a) [U/zlz = U,

(b) [U/z]a = a for atoms a # =z,

(c) [U/=zl(VW) = ([U/]V [U/z]W). .
For all Uy, ..., U, and mutually distinct zy,...,z,, the result of simul-
taneously substituting Uy for z;, U; for z2, ..., U, for z, in Y is called

[U1/z1,. .., Un/z]Y.

Example 2.7
(a) [(SK)/z](yzz) = y(SK)(SK),
(b) [(SK)/z, (KI)/y}(yzz) = KI(SK)(SK).

Exercise 2.8* (a) Give & definition of [U; /21, ..., U, /z,]Y by induc-

tion on Y.
(b) An example in Remark 1.23 shows that the identity

Ui/z1,..., Un/za]Y = [Ur/z:)([Uz/z2](... [Un/za]Y)...)

can fail. State a non-trivial condition sufficient to make this identity

true.

44 Combinatory logic

2B Weak reduction

In the next section, we shall see how I, K and S can be made to play

a role that is essentially equivalent to ‘\’. We shall need the following
reducibility relation.

Definition 2.9 (Weak reduction) Any term 1X, KXY or SXYZ
is called a (weak) redex. Contracting an occurrence of a weak redex in
a term U means replacing one occurrence of

X by X, or
KXY by X, or
SXYZ by XZ(YZ).

Iff this changes U to U’, we say that U (weakly) contracts to U’, or
U D1y U’

Iif V is obtained from U by a finite (perhaps empty) series of weak
contractions, we say that U (weakly) reduces to V, or

Uy, V.

" Definition 2.10 A weak normal form (or weak nf or term in weak
normal form) is a term that contains no weak redexes. If a term U

weakly reduces to a weak normal form X , we call X a weak normal
form of U.

(Actually the Church-Rosser theorem later will imply that a term
cannot have more than one weak normal form.)

Example 2.11 Define B = S(KS)K. Then BXY Z >, X(YZ) for all
terms X, Y and Z, since

BXYZ = S(KS)KXYZ
b1y KSX(KX)YZ by contracting S(KS)KX to KSX(KX)
P S(KX)YZ by contracting KSX to S
brw KXZ(YZ) by contracting S(KX)Y Z
brw X(YZ) by contracting KX Z.

{ e . o

2B Weak reduction 25
Example 2.12 Define C = S(BBS)(KK). Then CXY Zp, X ZY, since

CXYZ = S(BBS)(KK)XYZ
p1w BBSX(KKX)YZ by contracting S(BBS)(KK)X
>y BBSXKYZ by contracting KKX
>y B(SX)KYZ by 2.11
>y SX(KY)Z by 2.11

b1y XZ(KYZ) by contracting SX(KY)Z
Plw XZY by contracting KY Z.
Incidentally, in line 4 of this reduction, a redex KY Z seems to occur;

but this is not really so, since, when all its parentheses are inserted,
B(SX)KY Z is really (({((B(SX))K)Y)Z).

Exercise 2.13* Reduce the following CL-terms to normal forms:

(i) SIKz, (ii) SSKzy, (iii) S{SK)zy,

(iv) S(KS)Szyz, (v} SBBlxy.

Lemma 2.14 (Substitution lemma for >,,)
(a) XppY = FV(X) D FV(Y);
(b) XvyY = [X/v]Z by, [Y/v]Z;
() XY = [Ui/z1,...,Upn/2p)X by [U1/z1,...,Un/za]Y.

Proof For (a): for all terms U, V, W, we have: FV(IU) 2 FV(U),
FV(KUV) 2 FV(U), and FV(SUVW) 2 FV(UW (VW)).

For (b): any contractions made in X can also be made in the substi-
tuted X’s in [X/v]Z.

For (c): if R is a redex and contracts to T, then [U1/z1,...,Un/z,]R
is also a redex and contracts to [Us/z1,...,Us/z,]T. O

Theorem 2.15 (Church—Rosser theorem for >.,) IfUb, X and
Uv, Y, then there exists a CL-term T such that

X >y T and Y b, T.

Proof Appendix A2, Theorem A2.13. O

Corollary 2.15.1 (Uniqueness of nf) A CL-term can haove at most
one weak normal form.

AEREEE SR

40 Combinatory logic

Exercise 2.16 Prove that SKKX b, X for all terms X, (Hence, by
letting I = SKK, we obtain a term composed only of S and K which
behaves like the combinator 1. Thus CL could have been based on just
two atoms, K and S. However, if we did this, a very simple correspon-
dence between normal forms in CL and A would fail; see Remark 8.23
and Exercise 9.19 later.)

Exercise 2.17* (Tricky) Construct combinators B’ and W such that

B'XYZ b, Y(XZ) (forall X,Y,2),
WXY b5, XYY (for all X,Y).

2C Abstraction in CL

In this section, we shall define a CL-term called ‘[z]. M’ for every z and
M, with the property that

(le]. M)N o, [N/z]M.)

Thus the term [z]. M will play a role like A\z. M. It will be a combination
of I's, K’s, $’s and parts of M, built up as follows.

Definition 2.18 (Abstraction) For every CL-term M and every
variable z, a CL-term called [z]. M is defined by induction on M, thus:

(a) [z.M = KM if x gFV(M);

(b) [z]l.z =1

(¢) [zl.Uz =U ifz g FV(U);

() [=].UV = S([z].U)([z].V) if neither (a) nor (c) applies.!

Example 2.19

[zl.zy = S(lz].z)([z].y) by 2.18(f)
= SI(Ky) by 2.18 (b) and (a).

! These clauses are from [CF58, Section 6A, clauses(a)—(f)], deleting (d)-~(e), which
are irrelevant here. The notation ‘[z]’ is from [CF58, Section 6A]. In [Ros55],
[Bar84] and [HS86] the notation ‘A*z’ was used instead, to stress similarities be-
tween CL and A-calculus. But the two systems have important differences, and
‘A*z’ has since acquired some other meanings in the literature, so the ‘[z]’ notation
is used here.

2C Abstraction in CL 27
Warning 2.20 In A-calculus an expression Az can be part of a A-term,
for example the term Az.zy. But in CL, the corresponding expression
[z] is not part of the formal language of CL-terms at all. In the above

example, the expression [z]. 2y is not itself a CL-term, but is merely a
short-hand to denote the CL-term Si(Ky).

Theorem 2.21 The clauses in Definition 2.18 allow us to construct
[z]. M for all z and M. Further, [z]. M does not contain , and, for all
N

7

(lz]. M)N by, [N/z]M.
Proof By induction on M we shall prove that [z]. M is always defined,
does not contain z, and that
([z]. M)z >, M.

The theorem will follow by substituting N for z and using 2.14(c).
Case 1: M = z. Then Definition 2.18(b) applies, and

(z]l.2)z = lz >y .
Cuase 2: M is an atom and M # z. Then 2.18(a) applies, and
(z]. MYz = KMz >, M.
Case 3: M = UV. By the induction hypothesis, we may assume
([£]. U)z >y U, (zl. V)2 >y V.

Subcase 3(i): z & FV(M). Like Case 2.
Subcase 3(ii): ¢ € FV(U) and V = z. Then

([z. M)z = ([#].Uz)=z
= Uz by 2.18(c),
= M.
Subcase 3(iii): Neither of the above two subcases applies. Then
([g]. M)z = S(lz].U)([z]. V) z by 2.18(f)
Pro ([2].U)z (([z]. V) z)
by UV by induction hypothesis
= M.

(Note how the redexes and contractions for I, K, and S in 2.9 fit in with
the cases in this proof; in fact this is their purpose.) O

3

2% Combinatory logic

Exercise 2.22* Evaluate
[z]. u(vz), E .2(Sy), [z]. uzzv.

Remark 2.23 There are several other possible definitions of abstrac-
tion besides the one in Definition 2.18. For example, [Bar84, Defini-
tion 7.1.5] omits 2.18(c). But this omission enormously increases the
lengths of terms [z1].(... ([z,]. M)...) for most 3, ..., z,, M. Some
alternative definitions of abstraction will be 85@@8& in Chapter 9.

Definition 2.24 For all variables Z1,--., Ty (DOt necessarily distinct),
[Z1,.. 2] M = 1l ([ze]. (... ([zn]. M) ..)).
Example 2.25
(a) [z,9l.2 = [z].(y].z)
= [z].(Kz) by 2.18(a) for [y]
= K by 2.18(c).
(b) [z,y,2].22(y2) = [a]. (o). ([2].z2(y2)))
= [a]. (ly] (S([).22)(l2].y2)))by 2.18(F) for
= [x]. Q.Sm&.@v by 2.18(c) for
= [z].Sz by 2.18(c) for
=S by 2.18(c).
Exercise 2.26 * Evaluate
Tﬁu.@v N_.HN@» ?\.n Y, N_@AHNV‘ Wu» @_ -ZYY.

Compare [z, y, 2]. zzy with the combinator C in Example 2.12. Note that
_& Y, 2].y(xz) and [z,y].zyy give answers to Exercise 2. 17, combinators

B’ and W. There are other possible answers to that exercise, but the
the abstraction algorithm in Definition 2.18 has changed the formerly
tricky task of finding an answer into a routine matter.

Theorem 2.27 For all variables z,,. .., z, (mutually distinct),

(1, ..., zp] . MY Uy .. Uy by, ([Ur/z1,...,Upy /20| M

Proof By 2.14(c) it is enough to prove (1, ..., za]. M)zy .. 2 Dy M.
And this comes from 2.21 by an easy induction on n. O

| § |

2D Weak equality 29

Lemma 2.28 (Substitution and abstraction)

(a) FV([z].M) = FV(M) — {z} ifx e FV(M);
(b) [lly/zIM = [a].M ify ¢FV(M);
(©) [IN/zl(ly]-M) = [y).[N/z]M ify €FV(zN).
Proof Straightforward induction on M. O

Comment Part (b) of Lemma 2.28 shows that the analogue in CL of
the A-calculus relation =, is simply identity. Part (c) is an approximate
analogue of Definition 1.12(f).

The last few results have shown that [z] has similar properties to
Az. But it must be emphasized again that, in contrast to Az, [z] is
not part of the formal system of terms; [z]. M is defined in the meta-
theory by induction on M, and is constructed from I, K, S, and parts
of M.

2D Weak equality

Definition 2.29 (Weak equality or weak convertibility) We shall
say X is weakly equal or weakly convertible toY,or X =, Y, iff Y can be
obtained from X by a finite {perhaps empty) series of weak contractions
and reversed weak contractions. That is, X =, Y iff there exist Xq, ...,
X, (n > 0) such that

(Mi<n—1) (X;p1y Xit1 or Xip1D1w X),
Xo=X, X, =Y.

Exercise 2.30* Prove that, if B, W are the terms in Example 2.11 and
Exercise 2.17, then

BWBIz =, Sllz:

Lemma 2.31
(a) X=,Y = [XNZ =, [Y/v|Z
vi X=Y = ﬁqu\&pu...qu@\&ﬁ_k”.s HQ‘H\RH“,Q«‘P\HS._M\

3U Combenatory logic

Theorem 2.32 (Church—Rosser theorem for=,) IfX =, M\ %g
there exists a term T' such that

Xy T and Y p, T.
Proof From 2.15, like the proof of 1.41 from 1.32. O

Corollary 2.32.1 If X =, Y and Y is a weak normal form, then we
have X b, Y.

Corollary 2.32.2 If X =, Y, then either X and Y have no weak
normal form, or they both have the same weak normal form.

Corollary 2.32.3 If X and Y are distinct weak normal forms, then
X #4 Y; in particular S #,, K. Hence =, is non-trivial in the sense
that not all terms are weakly equal.

Corollary 2.32.4 (Uniqueness of nf) A term can be weakly equal to
at most one weak normal form.

Corollary 2.32.5 If a and b are atoms other than I, K and S, and
aXy ... Xy = bY1...Y,, thena=bandm=n and X; =, Y; for all
1 <m.

Warning 2.33 Although the above results show that =,, in CL behaves
very like =g in A, the two relations do not correspond exactly. The main
difference is that =4 has the property which [CF58] calls (£), namely

€ X=3Y = Xx.X=p)\z.Y.

(This holds in A\ because any contraction or change of bound variable
made in X can also be made in Az.X.) When translated into CL, (¢)
becomes

X=,Y = [z].X =, [z].Y.

But for CL-terms, [z] is not part of the syntax, and (¢) fails. For exam-
ple, take

X = Szyz, Y = zz2(y2);
then X =, Y, but

@ X = S(SS(Ky))(K2),
[.Y = S(SI(Kz))(K(yz)).

I . g

2D Weak equality 31

These are normal forms and distinct, so by 2.32.3 they are not weakly
equal.

For many purposes the lack of (¢) is no problem and the simplicity of
weak equality gives it an advantage over A-calculus. This is especially
true if all we want to do is define a set of functions in a formal theory,
for example the recursive functions in Chapter 5. But for some other
purposes () turns out to be indispensable, and weak equality is too
weak. We then either have to abandon combinators and use A, or add
new axioms to weak equality to make it stronger. Possible extra axioms
will be discussed in Chapter 9.

Exercise 2.34*
(a) Construct a pairing-combinator D and two projections D:, D,
such that
D:(Dzy) by z, D2(Dxy) vy y.

(b) Show that there is no combinator that distinguishes between
atoms and composite terms; i.e. show that there is no A such
that

AX =, S if X is an atom,

AX =, K if X =UV for some U, V.
(Operations involving decisions that depend on the syntactic
structure of terms can hardly ever be done by combinators.)

(¢) Prove that a term X is in weak normal form iff X is minimal with
respect to weak reduction, i.e. iff

XpyY = Y=X

(Contrast A-calculus, 1.27(d).) Show that this would be false if
there were an atom W with an axiom-scheme

wWXY », XYVY.

Extra practice 2.35

(a) Reduce the following CL-terms to weak normal forms. (For some
of them, use the reductions for B, C and W shown in Examples
2.11 and 2.12 and Exercise 2.17.)

(i) KSuzyz, ©@) S(Kz)(Kly)z
(iii) CSlzy, (iv) S(Chzy,

32 Combinatory logic

(v) B(BS)Bzyzu, (vi) BB(BB)uvwzy,
(vii) B(BW(BC))(BB(BB))zyzu.
(b) Evaluate the following:
[z]. zu(zv), ly]. uz{uy), [z, y]. uz(uy).
(c) Prove that SKzy =, Klzy. (Cf. Example 8.16(a).)

Further reading

There are many informative websites: just type ‘combinatory’ into a
search engine. Also several introductions to A include CL as well. The
following are some references that focus mainly on CL.

[Ste72], [Bun02] and [Wol03] are introductions to CL aimed at about
the same level as the present book. If the reader is dissatisfied with this
book, he or she might find one of these more useful!

[Bar84] contains only one chapter on CL explicitly (Chapter 7). But
most of the ideas in that book apply to CL as well as .

[Smu85] contains a humorous and clever account of combinators and
self-application, and is especially good for examples and exercises on the
interdefinability of various combinators.

[Sch24] is the first-ever exposition of combinators, by the man who
invented them, and is a very readable non-technical short sketch.

[CF58] was the only book on CL for many years, and is still valuable
for a few things, for example its discussion of particular combinators
and interdefinability questions (Chapter 5), alternative definitions of
[z] (Section 6A), strong equality and reduction (Sections 6B—6F), and
historical comments at the ends of chapters.

[CHST2] is a continuation and updating of [CF58], and contains proofs
of the main properties of weak reduction (Section 11B). Definitions of
|z] are discussed in Section 11C. References for other topics will be given
as they crop up later in the present book.

[Bac78] has historical interest; it is a strong plea for a functional style

of programming, using combinators as an analogy, and led to an upsurge
of interest in combinators, and to several combinator-based program-
ming languages. (But Backus was not the first to advocate this; some
precursors were [Fit58], [McC60], [Lan65], [Lan66], [BG66] and [Tur76].)

3

The power of A\ and combinators

3A Introduction

The purpose of this chapter and the next two is to show some of the
expressive power of both A and CL.

The present chapter describes three interesting theorems which hold
for both X and combinators, and are used frequently in the published lit-
erature: the fired-point theorem, Béhm’s theorem, and a theorem which
helps in proving that a term has no normal form.

After these results, Section 3E will outline the history of A and CL,
and will discuss the question of whether they have any meaning, or are
Jjust uninterpretable formal systems.

Then Chapter 4 will show that all recursive functions are definable in
both systems, and Chapter 5 will deduce from this a general undecid-
ability theorem.

Notation 3.1 This chapter is written in a neutral notation, which may
be interpreted in either A or CL, as follows.

Notation Meaning for A Meaning for CL
term A-term CL-term

X =Y X =Y X is identical to Y
X >g.w Y X >g Y X by Y

X =4 Y X =3 Y X =, Y

Az Az [z

Definition 3.2 A combinator is (in A) a closed pure term, i.e. a term
containing neither free variables nor atomic constants, and (in CL) a

33

