VHI EXPLANATION OF NOTATIONS

)f these the last three are variable, the others fixed. The following binary
afixes are connectors (i.e. they form sentences from other sentences)
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To avoid excessive parentheses we agree that all binary operators
nd connectors are associative to the left. Occasionally we shall use the
ot notation. In that case we shall follow the rules of [UDB] as modifed
1 §2B5.

Various affixes may be attached to these functional symbols. The above
onventions apply regardless of these affixes.

When superscripts and subscripts are attached to the same base symbol
he superscripts are to be taken as senior. Thus Bp,® is to beread as(By,).

Quotation marks

We shall follow established practice in using a specimen of a symbol
T expression, enclosed in single quotes, as a name for that symbol (or
xpression). This is rather a technical use of quotation marks; we there-
ore reserve single quotes for that purpose and employ ordinary (double)
(uotes for the nontechnical uses. (Cf. § 1D1.)

Additions during printing

Additions made to the text while in proof are either explicitly so mar-
ed or dre enclosed in square brackets.
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Introduction

Combinatory logic is a branch of mathematical logic which concerns
itself with the ultimate foundations. Its purpose is the analysis of certain
notions of such basic character that they are ordinarily taken for granted.
These include the processes of substitution, usually indicated by the use
of variables; and also the classification of the entities constructed by
these processes into types or categories, which in many systems has to
be done intuitively before the theory can be applied. It has been observed
that these notions, although generally presupposed, are not simple;
they constitute a prelogic, so to speak, whose analysis is by no means
trivial.

Two questions have incited the making of this analysis. The first of
these is the problem of formulating the foundations of logic as precisely
as possible; and in a manner which is simple, not only from the standpoint
of structure, but also from that of meaning. This is an end worthy of
being pursued for its own sake, and one to which some of the greatest
minds have devoted a good share of their energies. The exhibition of the
complicated rules of the prelogic as a synthesis made from rules of much
simpler character is a step in that direction. The second question is the
explanation of the paradoxes. There is reason for believing that the true
sourcg of our difficulties with these puzzles lies in the prelogic itself,
and therefore that an analysis of the prelogic will contribute to under-
standing them.

In order to get a better idea of the motivation and purpose of com-
binatory logic, it will be well to elaborate these points a little before we
proceed.l

A. THE ANALYSIS OF SUBSTITUTION

Consider the formulation of the propositional algebra in the Principia

[l

Mathematica.2 Let us use the.symbols ‘p’, ‘¢’, ‘#’, etc. for unspecified

1. For general summaries of combinatory logic from the standpoint of the present
work see [CFM], also [TCm] and [L.CA}]; a more extensive summary is given in
Cogan [FTS]. Expositions of certain parts may be found in Feys [TLC], Rosenbloom
{EML, pp. 109-133], and Rosser [DEL]. For the underlying philosophy and moti-
vation (supplementing somewhat the discussion of this Introduction) reference may
also be made to Schonfinkel [BSM] and the introductory portions of Rosenbloom
(Le., pp- 109-111); see also [PBP], [GKL] pp. 509-518, [ALS] pp. 363-374, [AVS]
pp. 381-386, and [FPF] pp. 371-375. For a possible application see [LPC].

2. [PM.I] Part 1. Sec. A.
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variables of the system, ‘P’, ‘Q’, ‘R’, for unspecified constructs from-the
variables by the operations. The system, when certain defects in the
formalization have been remedied, has two rules: (1) a““rule of inference”
(modus ponens), which we may write

=P ="1Pve@
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and (2) a rule of substitution, viz., that -
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is an allowable inference whenever R is obtained from Q by substitution
of certain constructs Py, Pg, ..., Py for the variables p;, 22 -y P

appearing in Q. It is evident that the second rule here is vastly more
complicated than is the first. We shall examine the nature of this com-
plexity more closely.

Let us look on the system, not as a formalism, but as a series of state-
ments with a meaning. What, then, is the meaning of a statement

for example

T1pvipve ?

Certainly the statement concerns neither the symbols ‘4’, ‘¢’ nor any
objects which they denote. Rather, what is asserted is a relation between
the operations of negation and alternation. Thus the P in an assertion
(3) is a combination of the primitive operations concerning which we assert
a certain property (viz., that it is a tautology). Such combinations P we
shall call, for the moment, “functions”.

Let us examine the rules (1) and (2) from this standpoint. The con-
nection between the function @ and the functions P and 7] P v Q in (1)
is quite precise and definite. Not so the connection between Q and R in (2).
If we admit only modes of combination which are as simple and definite
as that in (1), there are really infinitely many such modes implicit in the
rule (2) even for the case m = 1.4 For it must be understood as part of

3. The principal defect was the omission of the rule of substitution, and in general
the neglect of the distinction between a formal axiom and a rule. This defect has
been commented on by several persons, including Russell himself {IMP, p. 151].
For improved presentations see, for example, [HA], Post [IGT], Feys hH\ﬂH\u.
Herbrand [RTD]. Here we shall follow [HA]; but we shall conform to the Principia
notation except for the use of ‘7| instead of the Principia ‘~’ (the former symbol,
introduced by Heyting [FRI], is preferred because it is more specific).

4. It is known the general case can be reduced to the case m =1. See § 2C2.
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the concept of a function that there is a fixed order of its variables;
thus v ¢ as a function of $ and ¢ is a distinct function from g v p. The
substitution of R for the ith variable in Q is, as mode of combination of
functions, distinct from its substitution for the kth variable if 7 £ %;
and in each of these cases there is a further multiplicity of distinct processes
according to the number of arguments in Q. There are also various possi-~
bilities for identification and permutation of the variables to be taken into
account. Moreover, when these processes of construction are iterated,
there are equivalences which have to be taken intuitively.

These complexities may be illustrated in the field of ordinary mathe-
matics as follows. Let 4 and s be the difference and square functions, and
let the letters ‘4’, ‘y’, ‘2’ represent the first, second, third arguments
respectively. Then 4 is x — y and s is #2. The substitution of s for the
first argument of 4 is 2 — y, for the second argument is ¥ — 42, If 4 is
substituted for one of its own arguments there is an ambiguity as to
how the new arguments are to be numbered ; let us suppose the arguments
of the substituted function are kept consecutive and interpolated as a

- group in the sequence of arguments of the base function. Then by sub-

stitution of 4 in the first and second arguments of d we have respec-
tively the functions (x — 9) — z and x — (y — z). By permutation and
identification of arguments we have further functions such as x — (x — ),
y — (x — z), etc. Finally, if we substitute s for the first argument in 4 and
then again for the second argument in the result, we get the same function,
viz. % — y%, as if we had performed the substitutions in reverse order.5

If we pass from this intuitive point of view to a more formal one, then
it becomes a problem how to define the substitution operation exactly.
A rigorous answer to this question requires, as we shall see, a definition
by recursion. The conclusion of the previous paragraph still stands, viz.,
that we have in rule (2) an immensely more complicated rule than in
(1).6 Moreover, the recursive definition does not have any bearing on the
question of simplicity in relation to meaning.

All this holds for what is generally considered the simplest of logical
systems, the propositional algebra. If we pass to cases where there is
more then one category of variables, and where some of the variables
may be bound, the situation becomes more complicated still. The extent
of the complications in such cases may be seen from the fact that most
formulations of the rule for substitution for afunctional variable in the
first-order predicate calculus which were published, even by the ablest
logicians, before 1940, were demonstrably incorrect; and there is little
doubt that one of the first correct formulations, that given by Church

5. Cf. [ALS], pp. 368-9.
6. Cf. the formulation in Rosenbloom [EML, pp. 40 ff, 182 ff].
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[IML], p. 57, was derived by the aid of the theory of lambda-conversion,
the form of combinatory logic which is his specialty.?

We shall see that in combinatory logic all these processes can be
formulated on the basis of a logical system of great simplicity. This system
is of finite structure, in a very strong sense, and its rules are of the same
order of complexity as modus ponens. This represents, therefore, an
advance toward the first objective.

B. THE RUSSELL PARADOX

So much for the first point. We turn now to the second.
Consider, for example, the paradox of Russell. This may be formulated
as follows: Let F(f) be the property of properties f defined by the equation

(1) E(f)y =140,
where ‘71" is the symbol for negation. Then, on substituting F for f, we have
) F(F) = 71 F(F) .

If, now, we say that F(F) is a proposition, where a proposition is
something which is either true or false, then we have a contradiction at
once. But it is an essential step in this argument that F(F) should be a
proposition. This is a question of the prelogic; in most systems it has
to be decided by an extraneous argument. )

The usual explanations of this paradox are to the effect that F, or at
any rate F(F), is “meaningless”. Thus, in the Principia Mathematica the
formation of f(f) is excluded by the theory of types; in the explanation
of Behmann [WLM] one cannot use (1) as a definition of F because the
“Kurzzeichen” ‘F’ cannot be eliminated. By such methods one can,
presumably, exclude the paradoxes from a given system. But there is
evidently something about the preceding intuitive argument which is
not explained by such exclusions.

In combinatory logic we must make, in order to achieve the objectives
already mentioned, the following demands: (a) there shall be no distinction
‘between different categories of entities, 8 hence any construct formed

7. At least one can demonstrate the correctness of Church’s formulation by that
method. One should note, however, the historical statement made by Church Lec.
p- 63, and the correction thereto in his [rev HA]. In the latter Church admits that
he was mistaken in attributing an error to the formulation [HB.I], and that the
latter is probably the first published correct statement. On account of this admission

the statements in Rosenbloom [EML] p. 109, and Curry [rev Z] (which is based
on the claim made in Church [IML] )are inaccurate.

8. If the system has variables, a distinction between variables and other entities
may be allowed; but there shall be only one kind of variable, and any entity can be
substituted for any variable. Such systems have an intermediate character. (See § C.)
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from the primitive entities by means of the allowed operations must
be significant in the sense that it is admissible as an entity; ? (b) there
shall be an operation corresponding to application of a function to an
argument; (c) there shall be an equality with the usual properties; and
(d) the system shall be combinatorially complete, 10 i.e., such that any
function we can define intuitively by means of a variable can be repre-
sented formally as an entity of the system.

From these four demands it follows, not only that the F defined by
(1) is significant, but also that the equation (2) is intuitively true. This
is by no means an objection to the system; on the contrary it is a step
in advance. We can no longer “‘explain’ a paradox by running away
from it; we must stand and look it in the eye. Something is gained by
the mere bringing about of this state of affairs. The paradoxes are forced,
so to speak, into the open, where we can subject them to analysis. This

- analysis must explain the fact that F (F) does not belong to the category

of propositions, an explanation which comes within the province of
combinatory logic as here conceived.

C. PLAN OF THE WORK

The subject matter sketched in the foregoing discussion falls naturally
into two main parts. The first part is the analysis of the substitution
processes in themselves, without regard to the classification of entities
into categories. The second part introduces the machinery for effecting
a classification into categories, and also relations to special logicalnotions
such as implication, universal quantification, etc. Naturally the first part
has a more intimate relation to the first of the above objectives, whereas
the second part is more directly concerned with the second objective; but
there is some overlapping.

In the analysis a basic role is played by certain operators which repre-
sent combinations as functions of the variables they contain (perhaps
along with other variables). The combinations in question are those
formed from the variables alone by means of the operation postulated
in the second of the above demands. By the requirement of combinatorial
completeness these operators are represented by certain entities of the
system. These entities, and combinations formed from them by the

9. Le., the system must be completely formalized in the sense of § 1E (except
for the circumstance in the preceding footnote).

10. Rosenbloom (L.c., p. 116) uses the term ‘functionally complete’. This is not,
however, the ordinary sense of that term. Thus it is usually said that the classical
propositional algebra is functionally complete, although no functions whatever can
be represented in it in the sense we are here discussing. The term ‘combinatorially
complete’ was introduced in [PKR], p. 455.
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postulated operation, are called combinators. The term ‘combinatory
logic’ is intended to designate that part of mathematical logic which has
essential reference to combinators,! including all that is necessary for
an adequate foundation of the more usual logical theories.

It will be seen that the first part of combinatory logic deals with the
combinators in their formal relations to one another with reference only
to a relation of equality; this part can therefore be called pure combi-
natory logic. The second part deals with combinators as included in some
specified categories, as affected by quantifiers, and so on; we shall call
it sllative combinatory logic.

The combinators themselves may be defined in terms of an operation
of abstraction, or certain of them may be postulated as primitive ideas
and the others defined in terms of them. The first alternative leads to
the calculus of lambda-conversion of A. Church, and various modifications
of it; the second leads to the (synthetic) theory of combinators.1? It is the
synthetic theory which gives the ultimate analysis of substitution in
terms of a system of extreme simplicity. The theory of lambda-conversion
is intermediate in character between the synthetic theories and ordinary
logics. Although its analysis is in some ways less profound—many of the
complexities in regard to variables are still unanalyzed there—yet it is
none the less significant; and it has the advantage of departing less
radically from our intuitions. Accordingly we have decided, without
regard to historical considerations, to treat the various forms of lambda-
calculus first, and to develop the synthetic theories afterwards.

We are thus following the order of an analysis; the most fundamental
formulation is obtained at the end of Chapter 7. The theory of the i-
calculuses will be found in Chapters 3-4, while Chapter 5 forms a transition
between the A-calculuses and the synthetic theories of Chapters 6-7. The
equivalence between a synthetic theory and the corresponding A-calculus
1s established in Chapter 6; so that developments from that point on can
be based on either foundation. The consistency theorem of Church and
Rosser is considered in Chapter 4; certain generalizations of this theorem
will be considered at the same time.

An important aspect of pure combinatory logic, called combinatory
arithmetic, is concerned with the relations between combinators and
various kinds of numbers. This is a development which was not antici-
pated at the beginning. The original suggestions were made by Church,

11. The choice of the term ‘combinatory’, in preference to ‘combinatorial’, is
thus in agreement with the Oxford English Dictionary.

12. The term ‘theory of combinators’ might well replace the term ‘pure com-
binatory logic’. However the uses of the former term in the past bave been as in

the text, and it would probably be confusing to change it. The word ‘synthetic’ will
be added when it is desired to be explicit.
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[SPF.1I, p. 863] and some contributions were made by Rosser [MLV];
but the main developments are due to Kleene.13 It has turned out, not
only that one can make acceptable definitions of the positive (or natural)
integers in terms of combinators, but that every function of natural
integers which is “‘general recursive” (in the sense of a theory developed
by Kleene from suggestions of Herbrand and Godel) is definable by means
of combinators.14 This criterion has been shown to be equivalent to a
computability notion introduced by Turing [CNA)]. The mutual equiva-
lence of these three apparently so different notions is ground for believing
that we have in them a definition of an effectively calculable function.15
If so, then every effectively calculable numerical function can be defined
in terms of combinatorsand conversely. Some noteworthy developments on
the basis of combinatory arithmetic were obtained by Churchin thel930’s.16

Our original intention was to issue the present work in two volumes,
of which the first dealt with pure combinatory logic, and the second with
illative. For reasons of expediency, which are none the less good and
sufficient, we have had to change these plans. In particular we have
postponed our treatment of combinatory arithmetic to the second volume.17
In its place we have included three chapters on illative combinatory logic.
The first of these chapters, Chapter 8, isan introduction to illative combina-
torylogicasa whole; the others, Chapters 9and 10, deal with the first phase
of illative combinatory logic, which is called the theory of functionality.
For further introductory discussion, the reader is referred to Chapter 8.

13. See his [TPI], [LDR], and to some extent also his (PCF]. Unfortunately these
papers were written in the notation of Church [SPF]; this notation was cumbersome,
and Church himself abandoned it about 1940 {cf. §3S2). For accounts of Kleene’s
work, using the Schénfinkel type of notation, see Church (CLC] and Rosser [DEL].

14. Here by “function” is meant a single valued function which is defined for
every natural integer and has a natural integer as its value. The converse of the
statement also holds for any such function. There is also a similar statement for
“‘partial” functions; but we are not attempting to be precise about it here.

15. For recursiveness and its relation to the work of Turing, Post, and others
see Kleene [IMM]. This contains ample references to the original papers. It can be
supplemented in some respects by Péter [RFn]. There is also a forthcoming book
by Martin Davis, and one by J. Myhill and ]J. C. E. Dekker. For the relation of
recursiveness to effective calculability see especially Kleene 1c. § 62.

16. See his [RPx], [PFC], [UPE], [MLg], [NEP], [CNE]. Most of these papers
were also written in the notation of his [SPF], and the most extensive of them, [MLg],
is not easily accessible. The account of these matters in his [CLC] contains some
improvements in detail, but is disappointingly brief. There is also a theory of con-
structive ordinal numbers in terms of combinators ; for this see Church and Kleene
[FDT], Church {CSN], and Kleene [FPT], [NON].

17. On this account the discussion of combinatory arithmetic in the preceding
paragraph is fuller than might otherwise be expected. As a matter of fact, our
present research activity is along lines so near the foundations that combinatory
arithmetic has not yet begun to play a role in it. We have at present writing

relatively little to add to what is contained in the preceding references beyond what
appears in [PKR] and [FRA].
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Before entering upon combinatory logic proper in Chapter 3, it will
be necessary to formulate in a precise way certain notions connected
with the methodology of formal reasoning. The concepts of logical
system, entity of such a system, rule, variable, etc., which have entered
into the foregoing discussion, are necessarily somewhat vague; we shall
have to make them more precise in order to have a sound basis on which
to proceed. This will concern us in Chapters 1 and 2.

D. HISTORICAL SKETCH

Combinatory logic began with Schénfinkel [BSM] in 1924.18 In that
paper, which was prepared for publication by Behmann, Schénfinkel
called attention to the desirability of eliminating variables from logic,
introduced the idea of application, and showed that functions of different
numbers of variables could be eliminated by means of it—provided the
idea of function were enlarged so that functions could be arguments as
well as values of other functions (cf. § 3A). He introduced the special
combinators later called I, K, C, B, S (he called them I, C, T, Z, S, re-
spectively), and showed that logical formulas could be expressed without
variables by means of S and K. But Schonfinkel gave no technique of
deduction, and, in particular, gave no means of proving formally that
two intuitively equivalent combinators are equal.l?

A deductive theory somewhat along the lines indicated by Schénfinkel
was obtained in [GKL], for which [ALS] was a preliminary. This was a
synthetic theory based on a set of primitive combinators differing from
those of Schonfinkel. In this paper the terms ‘combinator’ and ‘combi-
natory logic’ were introduced. The proofs were quite long and clumsy
compared to those found later. But the consistency of the formulation
and its sufficiency for pure combinatory logic were established.

In the meantime, and quite independently, Church was developing the
system of formal logic which finally appeared in his two papers [SPF.I]
and [SPF.II]. In this theory a certain A-operation, representing the
abstraction of a function from its unspecified value, so to speak, played
a central role. The result is that Church’s theory contained combinators

18. For some earlier premonitions see the next to last paragraph of this section.

19. Schonfinkel also had some ideas in regard to illative combinatory logic. He
introduced an ‘“Unvertriglichkeitsfunktion” U which has the same relation to
the Sheffer stroke function that formal implication does to ordinary implication.
He showed that the ordinary stroke function and quantifiers could be defined in
terms of U. (This anticipates, in a way, the use of formal implication as a primitive
in Quine [SLg]). Schonfinkek then maintained that every logical statement could
be expressed in terms of S, K, and U without postulating the notions of proposition

or propositional function. But more recent developments in illative combinatory
logic show that any reasonable system constructed on sonaive a basis isinconsistent,
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(according to the definition above), and therefore belonged to combinatory
logic. The system also contained implication, etc. ; consequentlyit belonged
to illative combinatory logic. However, the part of his theory which
concerned pure combinatory logic soon crystallized out, and developed
into his calculus of lambda-conversion. Important theorems of unde-
cidability were derived in this system by Church and his co-workers;
and the system was put into relation with recursive number theory, the
theory of ordinal numbers, the predicate calculus, etc.20 Some of these
theorems will concern us in the later chapters of this work.

It was soon evident that there was some relation between the theories
of Curry and Church. The exact relationship was investigated by Rosser
in his thesis [MLV]. He constructed a synthetic theory of combinators,
weaker in some respects than Curry’s, which was equivalent to Church’s
A-conversion.?! Conversely it was shown later that a strengthened theory
of A-conversion was equivalent to Curry’s synthetic theory. From that
time on it was clear that a theory of combinators could be expressed as
a theory of 2-conversion and vice-versa. Someimportant improvementsin
the synthetic theories are due essentially to suggestions made by Rosser,
both in his thesis and later.22

An event which had an important influence on the further progress of
the subject was the discovery, by Rosser and Kleene working con-

20. See the discussion of combinatory arithmetic in § C.

21. Although the Church theory contained combinators, yet it was not quite
combinatorially complete. Functions constant over the whole range of its entities
could not be constructed in it; furthermore it lacked a principle of extensionality.
We shall say that the Church system was combinatorially complete in the weak sense.

22. The title to Rosser’s thesis (“A mathematical logic without variables’’)
discloses an anomaly about his system which requires comment. This title seems
strange in view of the fact that a system without variables had already been
published. The explanation of this anomaly is that Rosser did at one time conceive
that he was the first to exclude variables in a certain peculiar sense. Thus in a
manuscript copy of his thesis there is a passage, which did not appear in the printed
version, to the effect that Curry used the free variable because the latter could
prove x = x without any restriction on ». However, in the language used below,
the theorem in question is not an elementary theorem, but an epitheorem. (cf.
Chapter 2); in the sense of § 2C Curry’s system excludes variables just as rigidly
as Rosser’s. The point of Rosser’s exclusion is that he conceived equality as holding
only between entities which were in some sense significant; whereas Curry [GKL:
pp. 515 f] maintained that there is no such thing as an insignificant entity, that any
combination of the primitives has a meaning, and that questions of significance
in a more restricted sense belong to illative combinatory logic. Thus Rosser’s
exclusion is a relic of the fact that its prototype, the Church system, was anillative
system. The discovery of the Kleene-Rosser paradox (see the next paragraph),
which occurred while Rosser’s thesis was in press, caused large sections of the
original manuscript to be discarded, and deprived this particular feature of his work
of most of its importance. However there is a vestige of the same point of view in
Church’s insistence on the possession of a normal form as a criterion of significance,
a criterion which reminds one of Behmann [WLM]. Cf. § 3S3.
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jointly, of an inconsistency in the original system of Church.?8 This
inconsistency is a theorem of illative combinatory logic. It does not apply
to pure combinatory logic, for which the consistency of even the strongest
system had been demonstrated in [GKL] (and later was shown more
elegantly by methods which we shall study in Chapter 4). It applied,
however, to the strongest of the systems proposed in [PEI].24 It showed
that illative combinatory logic was not so simple a matter as we had
naively supposed. A study of the paradox, made in [PKR] and [IFL)
with respect to the strongest underlying system of pure combinatory
logic, disclosed that the root of the paradox lay in a fundamental incom-
patibility between combinatorial completeness and the kind of com-
pleteness which is expressed by the deduction theorem. Thus a system
of illative combinatory logic must either be nonclassical (like Ackermann
{WFL], for example) or must formulate in some way the category of
propositions.

The foregoing account of the histery of combinatory logic contains
enough to form a background for the systematic development. Further
details will be found at the end of certain chapters below.

One point, however, must be mentioned in passing. Considerations of
a combinatorial nature have entered into other systems of mathematical
logic. Feys has pointed out, in [PBF], that ideas of this nature occurred
in Peano and Burali-Forti. Such considerations are especially prominent
in the systems of abstract set theory developed by Fraenkel, von Neumann,
Godel, Bernays, and others.25 The von Neumann theory even postulates
certain functions which are essentially combinators,26 and perhaps half
of his theory is primarily combinatory in nature. These developments,

23. Kleene and Rosser {IFL]. Although very brief, this paper depended essentially
on practically all the papers written by both Kleene and Rosser up to that time.

24. 1t is sometimes stated that the Kleene-Rosser paradox showed the incon-
sistency of ‘‘the system of Curry” as well as that of Church. Thus Rosenbloom
[EML, p. 111] says that Kleene and Rosser ‘‘found a serious inconsistency in the
systems originally proposed by Curry and Church”. If this statement is taken literally
it is not quite correct. The original system of Curry (i.e. that in [GKL]) was a system
of pure combinatory logic and was demonstrably consistent. Curry’s further axioms
were introduced piecemeal, and the paradox applies only to the strongest of his
systems, which had scarcely been applied in practice (cf. § 851). As far as Church
is concerned, it happened that he proposed an axiom system for both pure and
illative combinatory logic—in fact for the whole of logic—all at once, and this
system was indeed shown to be inconsistent. But the part of his system which
formulated pure combinatory logic was also demonstrably consistent, so that
Rosenbloom’s statement, although literally true as regards Church, is hardly fair.
It is clear that Rosenbloom did not intend his statement to be taken in this literal
fashion, for he himself makes more adequate statements later (Lc., pp. 125 ff).

25. See for example Skolem [BAB]; Fraenkel [UGL], [ATG], [ATW]; von Neu-
mann [AML]; Ackermann [MTB]; Bernays [SAS]; Gédel [CAC).

26. Thus the # of von Neumann’s axiom scheme II 6 is the combinator S, and
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however, do not use the Schénfinkel application operation as a means of
reducing many-place functions to one-place ones, but instead they
employ an additional operation of ordered pair. They have until recently
been without influence on the course of combinatory logic, and vice
versa.??” However, E. J. Cogan in his doctoral thesis [FTS] showed that
the Godel formulation of set theory can be based quite elegantly upon
a system of illative combinatory logic; and that from this point of view
about half of the axioms become trivial.

Another development which is related to combinatory logic, but
entirely independent of it, is the study of variables which has been made
by Menger (see the papers listed under his name in the Bibliography).
His work is especially valuable for the analysis of the. different uses of
variables in ordinary mathematics and physics.

the % of II 7 is the combinator B. Other combinators are implicit in other axioms
of his Group II.

27. Note that it is characteristic of combinatory logic as developed here to
emphasize the notion of function, whereas set theory in the tradition of Zermelo
tends to0 emphasize the notion of set. Von Neumann’s theory is, in this respect,
intermediate between combinatory logic and traditional set theory. The more
recent theories of Bernays and Gdédel tend to revert to tradition, and so to widen
the gap between set theory and combinatory logic.



