
INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

INTRODUCTION TO CATEGORY THEORY FOR

FUNCTIONAL PROGRAMMING

Andrew R. Plummer

Department of Linguistics
The Ohio State University

14 Oct, 2009

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

OUTLINE

1 INTRODUCTION TO CATEGORIES

2 FUNCTORS AND FUNCTOR CATEGORIES

3 NATURAL TRANSFORMATIONS

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

CATEGORIES

CATEGORY AXIOMS (1)
A category C comprises the following:

A collection of objects, denoted by Ob(C);
A collection of arrows, denoted by Ar(C);

Neither of these collections need be sets.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

CATEGORIES

CATEGORY AXIOMS (2)
Operations dom and cod from the collection of arrows to
the collection of objects:

dom : Ar(C)→ Ob(C) and cod : Ar(C)→ Ob(C).

For any arrow f ∈ Ar(C), dom f is called the domain of f ,
and cod f is called the codomain of f . If dom f = a and cod
f = b, we represent this as

f : a→ b or a f→ b;

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

CATEGORIES

CATEGORY AXIOMS (3)
An operation ◦ that assigns to each pair 〈g, f 〉 of arrows
f ,g ∈ Ar(C) that satisfies cod f = dom g, an arrow g ◦ f , called
the composite of f and g, such that

dom g ◦ f = dom f , and cod g ◦ f = cod g;

That is,

(g ◦ f) : a→ c

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

CATEGORIES

CATEGORY AXIOMS (4)
For all objects b ∈ Ob(C), there is an arrow idb : b → b in
Ar(C), called the identity arrow on b, such that the following
identity holds for all arrows f : a→ b and g : b → c in Ar(C):

idb ◦ f = f and g ◦ idb = g;

That is,

(f ◦ ida) : a→ b (idb ◦ g) : b → c
(f ◦ ida) = f (idb ◦ g) = g

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

CATEGORIES

CATEGORY AXIOMS (5)
For all arrows f : a→ b, g : b → c, and h : c → d in Ar(C) the
following identity holds:

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

MONOIDS

MONOIDS

A monoid is a tripleM = 〈M, ∗,e〉 such that
M is a set,
∗ is an associative binary operation on M,
e is the identity element for ∗ on M.

Monoids are commonly used throughout computer science:
Transition monoids and syntactic monoids in describing a
finite state machine,
Trace monoids and history monoids for process calculi and
concurrent computing.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

HASKELL EXAMPLE

The Haskell is a purely functional programming language
based on the typed λ-calculus. All of our programming
examples are based on Haskell syntax.

LISTS

Let a be a type (e.g., Int). Then La = 〈[a], (++), []〉 is a monoid.

([] ++ [1,2,3]) = ([1,2,3] ++ []) = [1,2,3]
(([1,2] ++ [3,4]) ++ [5,6]) = ([1,2] ++ ([3,4] ++ [5,6]))
= [1,2,3,4,5,6]

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

MONOIDS AS CATEGORIES

MONOID CATEGORY

Given a monoidM = 〈M, ∗,e〉, let CM be the following
category:

Ob(CM) = {0} (any set with one element),
Ar (CM) = M,
g ◦ f = g ∗ f .
id0 = e, for 0 ∈ Ob(CM).

Since ∗ is associative inM, ◦ is associative on Ar (CM).
Since e is the identity inM, e is the identity arrow for
0 ∈ Ob(CM).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

PREORDERS AS CATEGORIES

PREORDERS

A preorder P is a set P equipped with a relation v which is
reflexive and transitive.

PREORDER CATEGORY

Given a preorder P = 〈P,v〉, let CP be the following category:
Ob(CP) = P,
Ar (CP) = {〈a,b〉 : a→ b | a v b},
〈b, c〉 ◦ 〈a,b〉 = 〈a, c〉.
ida = 〈a,a〉, for a ∈ Ob(CP).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

OUTLINE

1 INTRODUCTION TO CATEGORIES

2 FUNCTORS AND FUNCTOR CATEGORIES

3 NATURAL TRANSFORMATIONS

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

FUNCTORS

Purely functional programming is founded entirely on category
theory. Functors are used to handle side effects, and real world
interaction.

FUNCTOR (1)
A functor F from a category C to a category D is a function
such that:

Each object a ∈ Ob(C) is mapped to an object
F (a) ∈ Ob(D).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

FUNCTORS

FUNCTOR (2)
Each arrow f : a→ b in Ar(C) is mapped to an arrow
F (f) : F (a)→ F (b) in Ar(D) such that:

For all objects a ∈ Ob(C), the identity arrow on a is
mapped to the identity arrow on F (a). That is,

F (ida) = idF (a).

For all pairs 〈g, f 〉 where f ,g ∈ Ar(C) and cod f = dom g,
F (g ◦ f) = F (g) ◦ F (f).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

FUNCTORS

The main action of a functor is visualized with the following
commutative diagrams:

a f //

g◦f

��?
??

??
??

??
??

??
? b

g

��
c

F (a)
F (f) //

F (g◦f)
��?

??
??

??
??

??
??

F (b)

F (g)

��
F (c)

If F is a functor from C to D, we write F : C→ D or C F→ D.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

HASKELL EXAMPLE

Recall that LInt = 〈[Int], (++), []〉 is a monoid, and thus a
category.

Similarly, LChar = 〈[Char], (++), []〉 is a category.

THE ASCII NUMBER FUNCTOR

Let f :: [Char] -> [Int] be defined as follows:
f ([]) = []
f (char:chars) = [ascii(char)] ++ f([chars])

f takes a list of chars, and returns a list of ints. The i th element
of f([chars]) is the ascii number of the i th char in [chars].

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

HASKELL EXAMPLE

We need to verify that

f ([chars2] ++ [chars1]) = f ([chars2]) ++ f ([chars1])

0
[chars1] //

[chars2]++[chars1]

��?
??

??
??

??
??

??
? 0

[chars2]

��
0

f (0)
f ([chars1])//

f ([chars2]++[chars1])

��?
??

??
??

??
??

??
f (0)

f ([chars2])

��
f (0)

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

HASKELL EXAMPLE

Instance “blackboard”:

0
”board” //

”black”++”board”

��?
??

??
??

??
??

??
? 0

”black”

��
0

f (0)
f (“board ′′)//

f (“black ′′++“board ′′)

��?
??

??
??

??
??

??
f (0)

f (“black ′′)

��
f (0)

f (“black”) = [98,108,97,99,107]
f (“board”) = [98,111,97,114,100]
f (“black” ++ “board”) =
[98,108,97,99,107,98,111,97,114,100] = f (“blackboard”)

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

MONOID HOMOMORPHISMS

We can generalize the previous example.

MONOID HOMOMORPHISM

LetM = 〈M, ∗M ,eM〉 and N = 〈N, ∗N ,eN〉 be monoids. A
monoid homomorphism is a function φ :M→N such that

φ(eM) = eN ;
φ(a ∗M b) = φ(a) ∗N φ(b).

The monoid homomorphisms are exactly the functors between
monoids (when monoids are viewed as categories).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

MONOTONIC FUNCTIONS

We can treat preorders in similar fashion.

MONOTONIC FUNCTIONS

Let P = 〈P,vP〉 and Q = 〈Q,vQ〉 be (pre)orders. A monotonic
function is a function f : P → Q such that

f (a vP b) = f (a) vQ f (b).

The monotonic functions are exactly the functors between
preorders (when preorders are viewed as categories).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

FUNCTORS

IDENTITY FUNCTOR

The identity functor on a category C is the functor 1C : C→ C
such that

for all a ∈ Ob(C), 1C(a) = a.
for all f ∈ Ar (C), 1C(f) = f .

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

FUNCTORS

Since functors are functions we immediately have the following:

FUNCTOR COMPOSITION

Given functors F : A→ B and G : B→ C, the composite of F
and G, denoted G ◦ F , is the functor defined as

(G ◦ F)(a) = G(F (a)), for all a ∈ Ob(A);
(G ◦ F)(f) = G(F (f)), for all f ∈ Ar(A).

For all functors F : A→ B, G : B→ C, and H : C→ D, we have
H ◦ (G ◦ F) = (H ◦G) ◦ F .

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

HASKELL EXAMPLE

LBool = 〈[Bool], (++), []〉 is a category.

THE IS98 FUNCTOR

Let g :: [Int] -> [Bool] be defined as follows:
g ([]) = []
g (int:ints) = [is98(int)] ++ g([ints])

g takes a list of ints, and returns a list of bools. The i th element
of g([ints]) is True if and only if the i th int in [ints] is 98.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

HASKELL EXAMPLE

In Haskell syntax, the composition operator ◦ is denoted by .

COMPOSITION

Since g and f are functors, then so is

h = g.f :: [Char] -> [Bool]

h takes a list of chars, and returns a list of bools. The i th
element of h([chars]) is True if and only if the i th char in [chars]
is ’b’.

h (“tabby”) = g.f (“tabby”) = [False,False,True,True,False]

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

CATEGORIES OF CATEGORIES

We can again generalize the previous example.

Since functor composition is associative, and identity functors
satisfy the identity law for arrows, we can treat categories as
objects and functors as arrows, yielding categories of
categories.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

CATEGORY OF MONOIDS

CATEGORY OF MONOIDS

The category of monoids Mon is defined as follows:
Ob(Mon) = {M | M is a monoid},
Ar (Mon) = {φ | φ is a monoid homomorphism},
φ ◦ ψ is function composition,
idM is the identity function on M, forM∈ Ob(Mon).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

CATEGORY OF PREORDERS

CATEGORY OF PREORDERS

The category of preorders PreOrd is defined as follows:
Ob(PreOrd) = {P | P is a preorder},
Ar (PreOrd) = {f | f is a monotonic function on preorders},
f ◦ g is function composition,
idP is the identity function on P, for P ∈ Ob(PreOrd).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

FUNCTOR CATEGORIES

LOOKING AHEAD

We can define functors between categories of categories,
yielding an even higher level of abstraction.
At this level, the functors themselves are objects. We need
to define the arrows.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

OUTLINE

1 INTRODUCTION TO CATEGORIES

2 FUNCTORS AND FUNCTOR CATEGORIES

3 NATURAL TRANSFORMATIONS

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

The arrows of functor categories are called natural
transformations.

Natural transformations are used in defining monads (next
week’s topic). We simply provide definitions and examples. The
programming will be discussed next week.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

LEAD IN

Let C and D be categories, and let F : C→ D and G : C→ D
be functors from C to D.

The images of F and G are representations of the
category C within the category D.
We want to translate the representation F yields onto the
representation that G yields.
We want to do so in a way that preserves the structure of
the representation that F yields.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

Consider a,b ∈ Ob(C) and f ∈ Ar(C) where

a

f

��
b

F (a)

F (f)

��

G(a)

G(f)

��
F (b) G(b)

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

We translate F (a) onto G(a) and F (b) onto G(b) using arrows
in D. Call these arrows τa : F (a)→ G(a) and τb : F (b)→ G(b).

a

f

��
b

F (a)
τa //

F (f)

��

G(a)

G(f)

��
F (b) τb

// G(b)

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

Let C and D be categories, and let F : C→ D and G : C→ D
be functors from C to D.

NATURAL TRANSFORMATIONS

A natural transformation from F to G is a collection of arrows τ ,
contained in Ar(D), such that:

for each object a ∈ Ob(C), there is an arrow
τa : F (a)→ G(a) in τ , called a component of τ , such that

for any arrow f : a→ b in Ar(C), given
τb : F (b)→ G(b) ∈ τ , we have

G(f) ◦ τa = τb ◦ F (f).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

That is, the following diagram commutes:

F (a)
τa //

F (f)

��

G(a)

G(f)

��
F (b) τb

// G(b)

If τ is a natural transformation from F to G, we write τ : F → G,
or F τ→ G,

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

Let C and D be the categories represented by the following
diagrams (identities and compositions are suppressed):

C b

a

f

OO z

y

v

OO

x

u

OO

D

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

Let F : C→ D and G : C→ D be functors from C to D, defined
as follows:

F (a) = x G(a) = y
F (b) = y G(b) = z
F (f) = u G(f) = v

The reader may infer the remaining arrow assignments.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

That is, we have the following representations of C in D:

C b

a

f

OO z

y

v

OO

x

u

OO

D F (C) z G(b)

F (b)

v

OO

G(a)

G(f)

OO

F (a)

F (f)

OO

x

u

OO

G(C)

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

Now, we define a natural transformation τ from F to G as the
collection of arrows:

τa = u
τb = v .

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

That is, τ is the following “shift”:

F (C) z G(b)

F (b)

v

OO
τb

??���������
G(a)

G(f)

OO

F (a)

F (f)

OO
τa

??���������
x

u

OO

G(C)

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

IDENTITY TRANSFORMATION

The identity transformation on a functor F : C→ D is the
natural transformation 1F : F → F such that for all a ∈ Ob(C),

τa = idF (a) : F (a)→ F (a).

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATIONS

NATURAL TRANSFORMATION COMPOSITION

Let F , G, and H be functors from category C to category D, and
let τ : F → G and σ : G→ H be natural transformations. The
composite of τ and σ, denoted σ ◦ τ , is the collection of arrows
(σ ◦ τ)a = σa ◦ τa for all a ∈ Ob(C).

Natural transformation composition is, of course,
associative. The proof is left to the enthusiastic reader.
Composition together with identity gives us the functor
category DC – the category of all functors from C to D.

INTRODUCTION TO CATEGORIES FUNCTORS AND FUNCTOR CATEGORIES NATURAL TRANSFORMATIONS

FOR GREAT GOOD

THE HASKELL

More information on Haskell Syntax and Theory:
The Haskell: http://www.haskell.org
Haskell Beginners:
http://www.haskell.org/mailman/listinfo/beginners
Haskell Cafe:
http://www.haskell.org/mailman/listinfo/haskell-cafe

	Introduction to Categories
	Functors and Functor Categories
	natural transformations

