BRIEF MONAD EXAMPLE

Andrew R. Plummer

Department of Linguistics
The Ohio State University

28 Oct, 2009



OUTLINE

@ CATEGORIES AND COMPUTATION

«O>» «Fr «E»r <

i
v
it

ae



CATEGORIES AND COMPUTATION

IO PROBLEM AS MOTIVATION

Suppose we have a relation R between integers and files. R
simply takes an interger n and writes it to a file f.

Denote by f[n] the file that results from writing the integer n to
the file f. That s, (n, f[n]) € R.

Notice that (n, f[n][n]) is also in R. Thus there are two values
for the integer nin R, and so R is not a function. That is, the
naive approach to 10 computation is not functional.

For a language to be purely functional, we need a more
sophisticated approach to 10, and computation in general.



CATEGORIES AND COMPUTATION

COMPUTATIONS AS FUNCTORS

The key insight into achieving pure functionality is treating

values as objects of a category, and computations as functors
between values.

For example, let A be an object of values (of type A). We can
treat various computations on values in A as a functor M:

e Exceptions: MA= (A+ E) (E a set of exceptions).
o Side effects: MA= (A x S)° (S a set of states).

e Continuations: MA = R(A") (R a set of results).



CATEGORIES AND COMPUTATION

KLEISLI TRIPLES

We foramilze the insight as follows:

KLEISLI TRIPLE (1)

A Kileisli triple over a category C is a triple (M, n, x), where
e M: Ob(C) — Ob(C)
@ n4: A— MA, forall Ac Ob(C),
e f*: MA— MB,forall f: A— MB



CATEGORIES AND COMPUTATION

KLEISLI TRIPLES

KLEISLI TRIPLE (2)
The following equations must be satisfied:
L. ny = idpa
2. ffopa="f,forallf:A— MB
3. gtof*=(g*of), forallf:A— MBandg:B— MC.



CATEGORIES AND COMPUTATION

KLEISLI TRIPLES

Equations 1. and 2. are visualized as

TA TA

A

MA A

MA

Ma f*

MA MB



CATEGORIES AND COMPUTATION

KLEISLI TRIPLES

Equation 3. is visualized as

NA

A MA
f
f*
MB<—2——B
g* g




CATEGORIES AND COMPUTATION

KLEISLI TRIPLES

Equation 3. is visualized as

NA

A MA
f
f*
g*of MB < ® B
g g




CATEGORIES AND COMPUTATION

KLEISLI TRIPLES

Equation 3. is visualized as

TA

A

MA

f*




CATEGORIES AND COMPUTATION

HASKELL EXAMPLE

Haskell monads are Kleisli triples. They are called monads
since every Kleisli triple can be extended to a category
theoretic monad (a kind of endofunctor we won't define).

EXCEPTION HANDLING
An Exception monad (Exc, eta, ast) can be defined as follows:
e Exc a = ThrowException | Iden a

e eta::a->Exca
etaa=Idena

o astf=f forall f::a->Excb



CATEGORIES AND COMPUTATION

HASKELL EXAMPLE

EXCEPTION HANDLING

Let fstitem be a function that returns the first item in a
nonempty list. This function is not defined on the empty list.
Thus fstltem ([]) should throw an exception.

We can use the Exception monad to achieve the desired
behavior:

e fstitem :: [a] -> Exc a
e fstitem ([]) = ThrowException
o fstltem (a:as) = Iden a



CATEGORIES AND COMPUTATION

HASKELL EXAMPLE

We need to verify that eta and ast satisfy Kleisli Equations 1. 2.
and 3. We do so for fstitem on [Int]. Equations 1. and 2. are as

follows:
[Int] " _ Exc [Int] [Int] - _ Exc [Int]
ota asteta fstltem ast fstltem

Exc[Int] Exc Int



CATEGORIES AND COMPUTATION

HASKELL EXAMPLE

To verify Equation 3, consider fExc :: [Char] -> Exc [Int], which
maps lists of chars to lists of ints, throwing an exception on the
empty list. We then have:

[Char] —£2—~ Exc[Char]

fExc
ast fExc

Exc[Int] <& [Int]

ast fstitem

fstlitem

Excint



CATEGORIES AND COMPUTATION

HASKELL EXAMPLE

To verify Equation 3, consider fExc :: [Char] -> Exc [Int], which
maps lists of chars to lists of ints, throwing an exception on the
empty list. We then have:

[Char] —£—~ Exc[Char]

fExc
ast fExc

Exc[Int] cla [Int]
\

ast fstitem

(ast fstlitem)ofExc

fstitem

Excint



CATEGORIES AND COMPUTATION

HASKELL EXAMPLE

To verify Equation 3, consider fExc :: [Char] -> Exc [Int], which
maps lists of chars to lists of ints, throwing an exception on the
empty list. We then have:

[Char] —2—~ Exc[Char]

ast fExc

ExcInt]

(ast fstitem)ofExc

ast fstitem

Excint



CATEGORIES AND COMPUTATION

HASKELL SYNTAX

BIND AND RETURN
In haskell jargon:
e x (ast) is called ’'bind’, and is represented by »=
e 7 (eta) is called return’, and is represented by return

These are the building blocks of monadic computation. To
become a super haskell guru, you must master them.



CATEGORIES AND COMPUTATION

FOR GREAT GOOD

THE HASKELL
More information on Haskell Syntax and Theory:
e The Haskell: hitp://www.haskell.org

e Haskell Beginners:
http://www.haskell.org/mailman/listinfo/beginners

e Haskell Cafe:
http://www.haskell.org/mailman/listinfo/haskell-cafe



	Categories and Computation

