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‣Overview

‣Two types of learning:

‣ Adaptation of phonetic categories by adult listeners

‣ Acquisition of phonetic categories by infants during development

‣Question: Can a single learning mechanism account for both?

‣Not necessarily the same:

‣ Typically viewed as distinct processes

‣ Very different time scales: acquisition is slow; adaptation is rapid

‣ May require separate representations of phonetic categories
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‣Speech development

Speech perception

‣ Toscano, McMurray, Dennhardt, & Luck (2010), Psych Sci
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Phonetic cues Phonological Categories

‣ Learning mapping 
between cues and 

categories

‣Speech development

‣ Toscano, McMurray, Dennhardt, & Luck (2010), Psych Sci



‣A model system: VOT and voicing

‣ Toscano, McMurray, Dennhardt, & Luck (2010), Psych Sci
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‣How do listeners learn the mapping between cues and categories?

‣ One possibility: Track distributional statistics of acoustic cues

‣ Clusters corresponding to phonological categories

‣ e.g., English VOT and voicing

‣ Maye, Werker, and Gerken (2002), Cognition; Allen & Miller (1999), JASA

‣A model system: VOT and voicing



‣ Allen & Miller (1999); Beckman et al. (2012); Lisker & Abramson (1964); Image credit: Roke / Wikimedia Commons

‣Cross-linguistic differences

‣English

‣Swedish
‣Dutch

‣Thai



‣Speech development

‣Learning the distributional statistics of acoustic cues

‣Provides a way of learning the mapping between cues and categories

Is this similar to unsupervised perceptual adaptation experiments?

Can adults track changes in the distributional statistics of acoustic cues?



‣Perceptual adaptation

distributions for categories differing along a particular
acoustic–phonetic dimension, voice onset time (VOT).
The darker lines correspond to categories which are pro-
duced more consistently and thus have narrower distribu-
tions; the lighter lines to categories produced less
consistently with wider distributions. Both pairs of distri-
butions represent situations where an acoustic-phonetic
cue (VOT) is available to distinguish between two catego-
ries (A and B). The means of the distributions are the same
distance apart but the variances differ. If listeners are act-
ing as ideal observers, the increased overlap in the distri-
butions with greater variance (lighter lines) will result in
increased uncertainty (decreased precision) about which
category they are hearing.

To formalize this prediction, we define the task of the
listener as determining for a particular token, stimX, the
probability it came from category A (P(categoryA|stimX)).
The optimal solution is given by (1) where P(stimX|catego-
ryA) is the probability distribution of cue X for category A.

PðcategoryAjstimXÞ ¼ PðstimXjcategoryAÞ
PðstimXjcategoryAÞ þ PðstimXjcategoryBÞ

ð1Þ

Eq. (1) is a simplification of Bayes’ rule that ignores the role
of prior probabilities for each category (i.e., all categories
are equally likely), a point we return to later. In the optimal
solution, then, the posterior probability of a particular cat-
egory given an acoustic–phonetic cue (P(categoryA|stimX))
is proportional to how often that cue value has occurred
with that category in the past (P(stimX|categoryA)), relative
to how often it has occurred with any category
(P(stimX|categoryA) + P(stimX|categoryB)). The optimal
solution for each of the pairs of distributions in Fig. 1A is
illustrated in Fig. 1B. Note that for both solutions the cate-
gory boundary (point where the function crosses 0.5) is in

the same place along the x-axis, but the slopes of the cate-
gorization functions differ, reflecting the increased uncer-
tainty in the case of the wide distributions. If listeners
are making decisions using the entire probability distribu-
tions, we predict different categorization slopes for differ-
ent amounts of category variance (overlap). Furthermore
the ideal observer model makes a quantitative prediction
about the amount of uncertainty (slope of the categoriza-
tion function) given the amount of overlap (variance of
the probability distributions). This describes the minimal
amount of uncertainty for an ideal observer. We also ex-
pect some amount of additional uncertainty for actual
observers in both situations due to internal and external
noise in estimating the probability distributions. This addi-
tional uncertainty should not depend on the specific distri-
butions of the cues and should be the same for observers
categorizing both pairs of distributions.

Fine grained sensitivity to acoustic–phonetic cues is re-
quired for listeners to track the distributions of acoustic–
phonetic cues. Early models of speech perception treated
within-category variance as noise. Mechanisms such as
categorical perception were thought to define ideal bound-
aries along a continuum, with all exemplars within those
boundaries treated as identical category members (Liber-
man, Harris, Hoffman, & Griffith, 1957; Liberman, 1996).
However, considerable evidence has accumulated that lis-
teners are sensitive to within-category differences. For
example, differences in: reaction time (Pisoni & Tash,
1974), category goodness ratings (Miller & Volaitis,
1989), degree of semantic priming (Andruski, Blumstein,
& Burton, 1994), patterns of eye movements (McMurray,
Tanenhaus, & Aslin, 2002), and neural patterns of activity
(Blumstein, Myers, & Rissman, 2005) have all been docu-
mented for within-category VOT differences. In addition
both infants and adult listeners use distributional informa-
tion to find the number of categories along a continuum
(Maye & Gerken, 2000; Maye, Weiss, & Aslin, 2008; Maye,
Weker, & Gerken, 2002) and the optimal boundary be-
tween categories (Clarke & Luce, 2005). These results are
consistent with an ideal observer model. What has thus
far not been shown, however, is that listeners are sensitive
to the entire probability distribution of an acoustic–pho-
netic cue, and in particular the variances as predicted by
Eq. (1).

We tested this hypothesis by manipulating the proba-
bility distributions of tokens along a VOT continuum in a
category judgement task. In English, VOT (the time be-
tween the release burst and the onset of voicing in the vo-
wel) is the dominant cue to voicing (Lisker & Abrahmson,
1964) in word initial position. Short VOTs correspond to
words such as ‘‘beach” and long VOTs to words such as
‘‘peach”. The stimuli were tokens from two probability dis-
tributions (shown in Fig. 1A) centered around 0 and 50 ms
(the prototypical category means for ‘‘beach” and ‘‘peach”
in American English). For one group of participants, stimuli
came from a pair of distributions with relatively wide var-
iance (14 ms), and for another group, stimuli came from a
pair of distributions with relatively narrow variance
(8 ms). Importantly both pairs of distributions contain
the same number of tokens overall and the same category
means. Participants categorized the stimuli by clicking on

Fig. 1. (A) Probability distributions of tokens that listeners categorized in
the narrow condition (dark lines) and wide condition (light lines). (B)
Optimal response curves calculated from the probability distributions
using Eq. (1) for the narrow condition (dark lines) and wide condition
(light lines).

M. Clayards et al. / Cognition 108 (2008) 804–809 805

not vary for the two conditions. We quantified the amount
of additional uncertainty using the observation of Feldman
and Griffiths (2007) that given the categorization function
(2)

pðCategoryAjstimXÞ ¼ 1
1þ e%gstimXþb ð2Þ

the slope (g) is given by (3). The equation in (3) assumes
that both categories have the same variance (r2

categoryA;B)
and any additional uncertainty can be described as a
Gaussian distribution with zero mean and some variance
(r2

N).

slope ¼
lCategoryA % lCategoryB

r2
CategoryA;B þ r2

N
ð3Þ

Using (3), the r2
N values for both groups (Narrow = 10.7,

Wide = 10.8) were very similar, suggesting that the same
additional source of uncertainty affected responses in both
groups and was independent of the distributions
themselves.

We also examined eye movements (Allopenna, Magnu-
son, & Tanenhaus, 1998). From the posterior probability
functions in Fig. 4A, we predicted that the largest differ-
ence in looks to the competitor object (i.e., ‘‘peach” for
short VOTs and ‘‘beach” for long VOTs) between the two
groups would be at 20 and 30 ms, a smaller difference at
10 and 40 ms, and no difference at other VOT values.
Because there were so few trials at VOT values of %20,
20, 30 and 70 ms (see Table 1), we could not analyze eye

Table 1
Number of repetitions of each VOT value in the narrow and wide variance conditions

VOT %30 %20 %10 0 10 20 30 40 50 60 70 80

Narrow 0 3 27 54 27 3 3 27 54 27 3 0
Wide 3 12 27 30 27 15 15 27 30 27 12 3

Fig. 2. Example display screen containing the items ‘‘beach”, ‘‘peach”,
‘‘lace” and ‘‘race”. Locations of items were randomized across trials.
Actual displays were in color.

Fig. 3. Fitted response curves for individual participants in (A) narrow condition and (B) wide condition. Optimal response curves (solid lines) and curves
from average slope of individuals (dashed lines) for participants in (C) narrow condition and (D) wide condition.

M. Clayards et al. / Cognition 108 (2008) 804–809 807

‣Listeners rapidly adapt to novel distributions of cues (~1 hr experiments)

‣ Clayards, Tanenhaus, Aslin, & Jacobs (2008): Category variance

‣ Clayards et al. (2008), Cognition
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Figure 2.1: Experiment 1 VOT distributions, or the number of tokens heard at each VOT
step for the left- and right-shifted distributions. The dashed lines at 15 and 35 ms indi-
cate the ideal boundary locations for each distribution.

as a result approximately half of the participants did not return for the second day of the

study. These were excluded from analysis, leaving a total of 17 participants who com-

pleted both days of the study.

2.2.1.3 Stimuli

2.2.1.3.1 Auditory Stimuli

Auditory stimuli consisted of twelve VOT continua (six per talker) ranging from

-30 to 80 ms in twelve steps. Continua were created by cross-splicing recordings of nat-

ural speech using a technique similar to McMurray et al. (McMurray, Aslin, Tanenhaus,

Spivey, & Subik, 2008). First, both talkers were recorded in a sound-attenuated room
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Figure 2.2: Experiment 1 distribution effect in each quarter of the experiment.

‣Perceptual adaptation

‣Listeners rapidly adapt to novel distributions of cues (~1 hr experiments)

‣ Clayards, Tanenhaus, Aslin, & Jacobs (2008): Category variance

‣ Munson (2011): Category means

‣ Munson (2011), dissertation



‣Two phenomena

‣ Acquisition of speech sounds during development (slow process)

‣ Adaptation of speech sounds in adulthood (fast process)

‣Can a single model account for both?

‣ Are changes in plasticity needed?

‣ Are separate representations of long- and short-term categories needed?

‣Approach:

‣ Simulations with a computational model of speech categorization

‣ Examine parameter space of model to see if there are common learning rates for 
both acquisition and adaptation

‣Language acquisition and perceptual adaptation



‣Modeling approach

‣ Gaussian mixture model

‣ Statistical learning and competition

‣Acquisition during development

‣ Simulation 1: Determining the number of categories and their properties

‣Adaptation in the same model

‣ Simulation 2: Perceptual learning of shifted VOT distributions

‣Other aspects of perceptual learning in the model

‣ Simulation 3: Speaking rate adaptation

‣ Simulation 4: Learning new phonetic categories

‣ Simulation 5: Learning the categories of a second language

‣Overview



‣VOT example

‣ Clusters corresponding to phonological categories

‣ Different patterns across languages (Lisker & Abramson, 1964)

‣Gaussian mixture model (GMM)
‣ Categories defined by Gaussian

distributions 

‣ Mean (!)

‣ Standard deviation (σ)

‣ Likelihood (Φ)
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‣Model of speech perception

‣ McMurray, Aslin, & Toscano (2009); Toscano & McMurray (2010)



‣Model of speech perception

‣ McMurray, Aslin, & Toscano (2009); Toscano & McMurray (2010)

‣VOT example

‣ Clusters corresponding to phonological categories

‣ Different patterns across languages (Lisker & Abramson, 1964)

‣Gaussian mixture model (GMM)
‣ Categories defined by Gaussian

distributions 

‣ Model consists of a mixture of
Gaussians along a cue dimension
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‣ Allen & Miller (1999); Beckman et al. (2012); Lisker & Abramson (1964); Image credit: Roke / Wikimedia Commons

‣Speech sounds across the world’s languages

‣English

‣Swedish
‣Dutch

‣Thai



‣Modeling approach

‣ Gaussian mixture model

‣ Statistical learning and competition

‣Acquisition during development

‣ Simulation 1: Determining the number of categories and their properties

‣Adaptation in the same model

‣ Simulation 2: Perceptual learning of shifted VOT distributions

‣Other aspects of perceptual learning in the model

‣ Simulation 3: Speaking rate adaptation

‣ Simulation 4: Learning new phonetic categories

‣ Simulation 5: Learning the categories of a second language

‣Overview



‣Acquiring phonetic categories

‣Learning the distributional statistics of acoustic cues

‣Why is this a hard problem?

‣ Can’t specify number of categories a priori

‣ Speech sounds are unlabeled

‣ Learning is incremental

‣ McMurray, Aslin, & Toscano (2009); Toscano & McMurray (2010)



‣Learning in the model

‣ Statistical learning (Saffran, Aslin, & Newport, 1996; Maye, Werker, & Gerken, 2002)

‣ Track the distributional statistics of acoustic cues
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‣Acquiring phonetic categories

‣ McMurray, Aslin, & Toscano (2009); Toscano & McMurray (2010)



‣Learning in the model

‣ Statistical learning (Saffran, Aslin, & Newport, 1996; Maye, Werker, & Gerken, 2002)

‣ Track the distributional statistics of acoustic cues

Competition

‣ Allows the model to determine the correct number of categories

‣Acquiring phonetic categories

‣ McMurray, Aslin, & Toscano (2009); Toscano & McMurray (2010)



English VOTs

Spanish VOTs

Thai VOTs

‣Acquiring phonetic categories

‣ McMurray, Aslin, & Toscano (2009); Toscano & McMurray (2010)



‣The model can learn the correct categories for a variety of acoustic cues and 
phonological distinctions across different languages

‣Makes few assumptions:

‣ Unsupervised, incremental learning

‣ Competition between categories

‣ Small number of parameters (3) used to describe each category

‣Acquiring phonetic categories

‣ McMurray, Aslin, & Toscano (2009); Toscano & McMurray (2010)



‣Overview

‣Modeling approach

‣ Gaussian mixture model

‣ Statistical learning and competition

‣Acquisition during development

‣ Simulation 1: Determining the number of categories and their properties

‣Adaptation in the same model

‣ Simulation 2: Perceptual learning of shifted VOT distributions

‣Other aspects of perceptual learning in the model

‣ Simulation 3: Speaking rate adaptation

‣ Simulation 4: Learning new phonetic categories

‣ Simulation 5: Learning the categories of a second language



‣Can the same model adjust its categories in an adaptation experiment?

‣ Without changes in learning rates?

‣ Without separate long- and short-term representations of categories?

Examined this by exploring model parameter space

Compared model’s responses with listeners from Munson (2011)

‣Learning and adapting categories in a single model



‣Learning and adapting categories in a single model

‣Gaussian mixture model (GMM)

‣ Categories defined by Gaussian
distributions 

‣ Mean (!)

‣ Standard deviation (σ)

‣ Likelihood (Φ)
‣ McMurray, Aslin, & Toscano (2009)
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‣Learning and adapting categories in a single model

‣ Common 
parameters

‣ Successful 
adaptation 
parameters

‣ Successful 
developmental 

parameters

‣ Successful developmental 
parameters

‣ Successful adaptation 
parameters

‣ Slower ‣ Faster

‣ Learning rates



‣Ran simulations exploring the parameter space of the model

‣ Which learning rates yield successful development (generally slower?)

‣ Which yield successful perceptual learning (generally faster?)

‣ Are there learning rates that are common to both?

‣Learning and adapting categories in a single model



‣Learning and adapting categories in a single model

Which learning rates yield successful development?
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‣Learning and adapting categories in a single model

Which learning rates yield successful development?
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‣Learning and adapting categories in a single model

Which learning rates yield successful development?
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‣Learning and adapting categories in a single model

Which learning rates yield successful development?
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‣Learning and adapting categories in a single model

Which learning rates yield successful development?
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‣Results of developmental simulation

‣ A range of learning rates leads to successful category acquisition

‣ Demonstrates that the model is relatively flexible in its ability to discover the 
category structure over development

Next question: do some of these learning rates also lead to successful 
adaptation?

‣Learning and adapting categories in a single model



43

VOT (ms)

Nu
m

be
r o

f T
ok

en
s

0

10

20

30

40

50

60

70 !

!

!

!

! !

!

!

!

!

! !

−20 0 20 40 60 80

Distribution
! Left Right

Figure 2.1: Experiment 1 VOT distributions, or the number of tokens heard at each VOT
step for the left- and right-shifted distributions. The dashed lines at 15 and 35 ms indi-
cate the ideal boundary locations for each distribution.

as a result approximately half of the participants did not return for the second day of the

study. These were excluded from analysis, leaving a total of 17 participants who com-

pleted both days of the study.

2.2.1.3 Stimuli

2.2.1.3.1 Auditory Stimuli

Auditory stimuli consisted of twelve VOT continua (six per talker) ranging from

-30 to 80 ms in twelve steps. Continua were created by cross-splicing recordings of nat-

ural speech using a technique similar to McMurray et al. (McMurray, Aslin, Tanenhaus,

Spivey, & Subik, 2008). First, both talkers were recorded in a sound-attenuated room
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Figure 2.2: Experiment 1 distribution effect in each quarter of the experiment.

‣Learning and adapting categories in a single model

‣Can the model capture learning effect seen for listeners in Munson (2011)?

‣ Tested model in same adaptation experiment

‣ Compared model and listener responses across sets of learning rates



‣Learning and adapting categories in a single model
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‣Can the model capture learning effect seen for listeners in Munson (2011)?
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‣Learning and adapting categories in a single model
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‣Can the model capture learning effect seen for listeners in Munson (2011)?



‣Learning and adapting categories in a single model

‣Can the model capture learning effect seen for listeners in Munson (2011)?

‣ Model accurately captures responses to left- and rightward shifted distributions

‣ Can also model individual differences

!"#$%"&'()*)+%(',&- .&-,%/*,%0#1&" 2'-,%"&'()*)+%(',&-

3433

3456

3463

3476

8433

3 83 53 93 :3 3 83 53 93 :3 3 83 53 93 :3

;#*<&%#)-&,%,*0&%=0->

?(
#@
#(
,*#
)%
A@
A B&/,

C*+D,

B*-,&)&(-

E#1&"

!"#$%"&'()*)+%(',&- .&-,%/*,%0#1&" 2'-,%"&'()*)+%(',&-

3433

3456

3463

3476

8433

3 83 53 93 :3 3 83 53 93 :3 3 83 53 93 :3

;#*<&%#)-&,%,*0&%=0->

?(
#@
#(
,*#
)%
A@
A B&/,

C*+D,

B*-,&)&(-

E#1&"

VOT distribution shift

!"#$%"&'()*)+%(',&- .&-,%/*,%0#1&" 2'-,%"&'()*)+%(',&-

3433

3456

3463

3476

8433

3 83 53 93 :3 3 83 53 93 :3 3 83 53 93 :3

;#*<&%#)-&,%,*0&%=0->

?(
#@
#(
,*#
)%
A@
A B&/,

C*+D,

B*-,&)&(-

E#1&"

Group

ημ = 0.0625
ησ = 0.00625
η!"= 0.008

ημ = 8
ησ = 0.8

η!"= 0.008

Left shift
ημ = 0.125
ησ = 0.1
η!"= 0.002
RMSE = 0.025 Right shift

ημ = 0.0625
ησ = 0.2

η!"= 0.004
RMSE = 0.044



! ! !

!

!

!
! !

! ! !

!

!

! ! !

! ! !

!

! ! ! !

! ! !

! ! ! ! !

! ! !

!

! ! ! !

! ! !

!

!

! ! !

! ! !

!

!
! ! !

! ! !

!

! ! ! !

! ! ! !

! !

!

!

! ! !

!

!

! ! !

! ! !
!

!

! ! !

! ! !

!

!

! ! !

! ! ! !

!

!

! !

! ! !

!

! ! ! !

! ! !

!

! ! ! !

! ! !

!

! ! ! !

! ! !

!

! ! ! !

! ! ! !

! ! ! !

 1  2  3  4  5

 6  7  8  9 10

11 12 13 14 15

16 17 18

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0 20 40 60 0 20 40 60 0 20 40 60

VOT (ms)

Pe
rc

en
t v

oi
ce

le
ss ! listener

model

!

!

left
right

‣Learning and adapting categories in a single model



‣A single model can capture both acquisition of speech sound categories 
during development and adaptation in adulthood

‣ Simple unsupervised learning procedure

‣ No changes in model plasticity over development

‣ Represents a “minimal description” of the process

‣Learning and adapting categories in a single model



‣Overview

‣Modeling approach

‣ Gaussian mixture model

‣ Statistical learning and competition

‣Acquisition during development

‣ Simulation 1: Determining the number of categories and their properties

‣Adaptation in the same model

‣ Simulation 2: Perceptual learning of shifted VOT distributions

‣Other aspects of perceptual learning in the model

‣ Simulation 3: Speaking rate adaptation

‣ Simulation 4: Learning new phonetic categories

‣ Simulation 5: Learning the categories of a second language



‣Simulation 2: Speaking rate adaptation

‣ Can the model update its VOT representations in the context of variable 
speaking rates?
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‣Adapting phonetic categories

‣ Toscano & McMurray (2012), Attn Percep & Psychophys; Toscano & McMurray (submitted)
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‣Adapting phonetic categories

‣ McMurray, Horst, Toscano, & Samuelson (2009)

‣Simulation 2: Speaking rate adaptation

‣ Can the model update its VOT representations in the context of variable 
speaking rates?



‣Adapting phonetic categories

‣Simulation 3: Learning a new category

‣ Pisoni, Alsin, Perry, & Hennessy (1982)

‣ 3-way voicing distinction based on VOT



‣Potential implications for second language learning

Discontinuous shift Gradual shift

Gradual vs. discontinuous changes in language environment



‣Summary and conclusions

‣A single model can capture both acquisition of phonetic categories during 
development and adaptation in adulthood

‣ Simple unsupervised learning procedure

‣ No changes in model plasticity over development

‣ Represents a “minimal description” of the process

‣ No need to have separate representations for acquisition and adaptation

This suggests that

‣ aspects of perceptual adaptation can be explained by changes to long-term 
representation of phonetic categories

‣ the same learning mechanism can operate over vastly different time-scales



‣ Thanks!


