

Phonological Inference and Adaptation to Cross-Category Vowel Mismatches

Background & Motivation

Brief exposure to an unfamiliar accent improves word recognition via adaptive processes [1-3]. This line of research has tended to investigate adaptation to isolated within-category consonant variability [4,5], or to entire sound repertoires [1,3]. Less is known about how listeners adapt to and generalize learning about vowel variation [but see 6], despite the fact that dialects of some languages, including American English, are characterized predominantly by vowel variation [7].

Research Questions

Method

- How do listeners cope with cross-category vowel variability in speech processing?
- Obes vowel adaptation generalize to new words and untrained vowel shifts?

F2 (Hz) at vowel midpoint

Structure of Auditory Lexical Decision Tasks

			# of Lexical Decision Items	
Novel Accent	LexDec Item Types	Example Item	Pre-	Post-
			familiarization	familiarization
Exp 1	Standard Vowel		80	120 (pre- + 40 new)
front vowel lowering	Front Vowel Lowered	witch as [w <mark>ɛ</mark> ʧ], cf. /w <u>ı</u> ʧ/	40	60 (pre- + 20 new)
	Front Vowel Raised	<i>swift</i> as [swift], cf. /swift/	40	60 (pre- + 20 new)
	Front Vowel Backed	<i>drift</i> as [dr <u>ʊ</u> ft], cf. /drɪft/	40	60 (pre- + 20 new)
	TOTAL		200	300
Exp 2	Standard Vowel		80	120 (pre- + 40 new)
back vowel lowering	Back Vowel Lowered	<i>wooden</i> as [wodən], cf. /w <u>u</u> dən/	40	60 (pre- + 20 new)
	Back Vowel Raised	good as [g <u>u</u> d], cf. / <u>gʊ</u> d	40	60 (pre- + 20 new)
	Back Vowel Fronted	<i>shook</i> as [ʃ <u>ı</u> k], cf. / <u>∫ʊ</u> k	40	60 (pre- + 20 new)
	TOTAL		200	300

Item Properties & Terminology

	pre-familiarization items				
0.5 high frequency		0.5 low freque			
0.25 in passage	0.25 not in passage	0.25 in passage	0.25		
For <i>in passage</i> i frequency during <i>high freq in-pass</i>	tems, English frequer familiarization (R ² =0 <i>age</i> items vs. 2 occur	ncy was confounde 0.32): 8 occurrenc rences for <i>low frec</i>	əd witl ces or g <i>in-pa</i>		

Kodi Weatherholtz kweatherholtz@ling.osu.edu Department of Linguistics, The Ohio State University

Experiment 1

ency

not in passage

th occurrence n average for *assage* items.

Analysis of endorsement patterns

- mixed logit regression on lexical decisions by item type and block (maximal slopes)
- exposure to the *front vowel lowered* accent increased "word" responses for items with t and certain accent-inconsistent vowel shifts.
- two sub-analyses (w. Bonferroni corrected alpha) to test for generalization

Sub-analysis 1: Generalizing learning vs. a post-familiarization response bias

Table 1: Mean change in endorsement rates across blocks for repeated lexical decision items (standard error in parentheses).

	I	,	
		FV-LOWERED	FV-RAISED
Exposure status	Freq	% change	% change
In passage	High	30.0 (5.7)	14.7 (4.2)
	Low	17.1 (3.7)	18.2 (5.0)
Not in passage	High	25.3 (5.6)	14.7 (3.9)
	Low	19.4 (6.6)	22.4 (5.6)

• The largest endorsement increase occurred for the accent-consistent forms that were presented most frequently during familiarization, consistent with a learning account, rather than a simple response bias.

Sub-analysis 2: Generalization to new words

- mixed logit model on post-familiarization judgments for repeated and new items
- no difference in endorsement rates for repeated and new items
- thus, learning generalized to new items

Note: repeated denotes the subset of items that occurred in both lexical decision blocks but that were initially rejected (i.e., vowel-shifted items that were unrecognizable prior to accent learning

A Phonological Inference Account

Analysis of endorsement patterns

• Replication of results from Experiment 1: exposure to the *back vowel lowered* accent increased "word" responses for items with both accent-consistent and certain accent-inconsistent vowel shifts.

Sub-analysis 1: Generalizing learning vs. a post-familiarization response bias

Table 2: Mean change in endorsement rates across blocks for repeated lexical decision items (standard error in parentheses).

		BV-LOWERED	BV-RAISED	
Exposure status	Frequency	% increase	% increase	
In passage	High	25.0 (5.2)	16.3 (7.7)	
	Low	13.8 (4.5)	6.3 (6.6)	
Not in passage	High	13.8 (6.2)	14.4 (6.7)	
	Low	8.5 (4.9)	9.8 (3.9)	

Sub-analysis 2: Generalization to new words

 Paralleling Exp 1, no difference in endorsement rates for *repeated* and *new* items from either the **BV-LOWERED** or **BV-RAISED** sets

- generalized across the lexicon
- similar though accent-inconsistent vowel shifts.

[1] Bradlow, A. R. & Bent, T. (2008). Perceptual adaptation to non-native speech. *Cognition*, 106:707-729. [2] Nygaard, L. C., Sommers, M. C., & Pisoni, D. B. (1994). Speech perception as a talker-contingent process. *Psychological Science*, 5:42-46. [3] Adank, P. & Janse, E. (2010). Comprehension of a novel accent by young & older listeners. *Psychology & Aging*, 25: 736-740. [4] Eisner, F. & McQueen, J. M. (2005). The specificity of perceptual learning in speech processing. *Perception & Psychophysics*, 67:224-238. [5] Kraljic, T. & Samuel, A. G. (2006). Generalization in perceptual learning for speech. Psychonomic Bulletin & Review, 13:262-268. [6] Maye, J., Aslin, R., & Tanenhaus, M. (2008). The Weckud Wetch of the Wast: Lexical adaptation to a novel accent. *Cognitive Science*, 32:543-562. [7] Labov, W., Ash, S., & Boberg, C. (2006). *The Atlas of North American English*. Mouton de Gruyter, Berlin.

- This work was funded by a National Science Foundation Graduate Research Fellowship (Grant No. 743796).
- Jessica Maye for sharing written materials.

Experiment 2

Note: *repeated* denotes the subset of items that occurred in both lexical decision blocks but that were initially rejected (i.e., vowel-shifted items that were unrecognizable prior to accent learning.

Conclusions

 Listeners learned the novel system of vowel shifts in the speaker's accent, which improved recognition of accent-consistent pronunciations.

Familiarization improved recognition of new words, indicating that learning

 Familiarization to a system of vowel lowering improved recognition of raised vowel forms, indicating that learning generalized to certain *structurally*

References

Acknowledgements

- I am grateful to Sara Phillips-Bourass and Laurie Maynell for recording stimuli (and for their impressive vocal talent). - I am thankful to Cynthia Clopper, Kiwako Ito, Kathryn Campbell-Kibler, Shari Speer, and Gary Dell for comments on this work, and to