

Phonetic Convergence and Talker Linguistic Distance: Fine-Grained Acoustic and Holistic Measurements

Current Issues and Methods in Speech Adaptation April 6-7, 2013 The Ohio State University

Midam Kim and Ann Bradlow midamkim@gmail.com

Background

- Previous study: Kim et al. (2011)
- In a task-oriented conversation between two talkers,
- When holistically measured in an XAB perception test,
- 1) Language distance negatively affects phonetic convergence between interlocutors.
- 2) In N-NN conversations, native talkers tend to not converge towards nonnative partners, with only one exception (a high proficiency nonnative partner).

Current Research

- 1.Linguistic limitation of phonetic convergence in a noninteractive condition
- Can a native talker converge towards a model talker with different dialects or with different L1s?
- How does preexisting acoustic distance between participants and model talker affect phonetic convergence?
- 2.Generalizability of phonetic accommodation
- Can change transfer from exposed items to unexposed items?
- 3. Various measurements of phonetic accommodation
- Words: segmental & suprasegmental measurements
- Sentences: human&computational holistic measurements

Materials and Measurements

- Model Talkers
- 2 female native talkers of English (Dialect: US Midland)
- 2 female Korean talkers of English (Proficiency: high)
- Two sets of materials to see the generalization effect
- 63 English monosyllabic words: Set 1 and Set 2
- 63 English disyllabic words: Set 1 and Set 2
- 64 English sentences: Set 1 and Set 2
- Dependent measures for accommodation
- Adjusted acoustic change: 1-syl and 2-syl words
 ((posttest pretest)_{expr} _{average}(posttest pretest)_{cntrl})
- x (|model pretest|/(model pretest))_{expr}
- > o: convergence, < o: divergence, = o: maintenance
- Dynamic time warping: full sentences and hums
- similarity cost(pretest, model) similarity cost(posttest, model)
 > o: convergence, < o: divergence, = o: maintenance
- XAB perception test: sentences
- 55 native English listeners heard three sounds in a row and selected between the second (A) and third (B) sounds for the better match to the first sound (X).
- Posttest sample selection rate > 50 %: convergence

Passive Auditory Exposure Experiment

Participants

- 67 female native talkers of English
- 20 in control, 13 in Same-Dialect, 10 in Different-Dialect, 24 in Different-L1

Procedure

- 1 & 3. Pretest and Posttest: Participants read all materials (Set 1 AND Set 2)
- **2. Exposure:** participants were exposed to 9 repetitions of half of the materials (Set 1 OR Set 2) for a closed-set identification test (8-multiple choice including the stimulus).
 - Exp. groups heard the materials read by one of the 4 model speakers.
 - Control group saw the materials written on the monitor.
- No shadowing, no explicit training or feedback

Control Group Pretest Production Production Posttest Production Auditory Experimental Groups Posttest Production Production Production Production Production Auditory Exposure to Model

Results

Words: Acoustic Analyses (example: vowel duration ratio of disyllabic words)

Preexisting Participant-Model V2/V1 Duration Ratio Distance

All Accommodation Measurements

C: Convergence, M: Maintenance, D: Divergence

Linguistic level	Measurement	Group level linguistic distance		
		Same-dialect	Same-L1	Different-La
Monosyllabic words	VOT	C	M	C
	Vowel Duration	C	C	C
	fo-max	C	C	C
	f ₁	C	C	C
	f ₂	C	C	C
Disyllabic words	V2/V1 Duration Ratio	C	C	C
	V2/V1 fo Ratio	C	C	C
	V2/V1 Amplitude Ratio	C	C	C
Sentences	DTW full sentence	D	M	C
	DTW hum	D	M	C
	XAB perception test	C	C	C

Sentences: XAB and Dynamic Time Warping (example: full sentences)

Summary

- 1. Phonetic convergence occurred to all model talkers: same-Dialect, different-Dialect, different-L1 (high proficiency)
- 2. Within each group level distance, the farther the preexisting acoustic distance, the more convergence, for both increasing and decreasing directions. -> Room for change needed
- 3. Convergence on old items generalized to new items.
- 4. Convergence was observed with all acoustic measurements on monosyllabic and disyllabic words.
- 5. Human holistic judgments and computational holistic judgments indicated different group level patterns.
- 6. The computational holistic judgments positively contributed to prediction of human judgments.

