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Problem of lack of invariance: interpretation of 
acoustic cues varies across environments.
Proposed solution: listeners use a generative 
model to predict language input.  Prediction error 
leads to adaptation (updating beliefs about the 
generative model)
Applies to predicting environments, too (what kind 
of talkers are expected)

in new environments, and generalization of 
adaptation across environments (talkers)

Goal: infer intent behind observable cues, via intermediate lin-
guistic units (phonetic categories, words, syntactic structures, 
etc.)
Uncertainty is present at every stage (ambiguity and noise)
Optimal inference under uncertainty is described by Bayes Rule:

p(c|x) ∝ p(x|c)p(c)
Combines prior probability of c and likelihood of observing cue 
value x given c.
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Good comprehension depends on accurate likelihood p(x|c, µc,σ
2
c ) (the distribu-

tion of cues for each category, characterized by mean and variance)
Lack of invariance: likelihood changes across contexts due to differences in envi-
ronments (speaker, dialect, etc.)
A rational comprehension system is sensitive to these differences in distributions.

ADAPTED CATEGORY BOUNDARY DUE TO VARIANCE CHANGES
(Behavior+modeling: Clayards et al. 2008)

Steeper for lower variance distributions
Exposed listeners to low and high variance VOT distributions
Found steep/shallow slopes, respectively.

distributions for categories differing along a particular
acoustic–phonetic dimension, voice onset time (VOT).
The darker lines correspond to categories which are pro-
duced more consistently and thus have narrower distribu-
tions; the lighter lines to categories produced less
consistently with wider distributions. Both pairs of distri-
butions represent situations where an acoustic-phonetic
cue (VOT) is available to distinguish between two catego-
ries (A and B). The means of the distributions are the same
distance apart but the variances differ. If listeners are act-
ing as ideal observers, the increased overlap in the distri-
butions with greater variance (lighter lines) will result in
increased uncertainty (decreased precision) about which
category they are hearing.

To formalize this prediction, we define the task of the
listener as determining for a particular token, stimX, the
probability it came from category A (P(categoryA|stimX)).
The optimal solution is given by (1) where P(stimX|catego-
ryA) is the probability distribution of cue X for category A.

PðcategoryAjstimXÞ ¼ PðstimXjcategoryAÞ
PðstimXjcategoryAÞ þ PðstimXjcategoryBÞ

ð1Þ

Eq. (1) is a simplification of Bayes’ rule that ignores the role
of prior probabilities for each category (i.e., all categories
are equally likely), a point we return to later. In the optimal
solution, then, the posterior probability of a particular cat-
egory given an acoustic–phonetic cue (P(categoryA|stimX))
is proportional to how often that cue value has occurred
with that category in the past (P(stimX|categoryA)), relative
to how often it has occurred with any category
(P(stimX|categoryA) + P(stimX|categoryB)). The optimal
solution for each of the pairs of distributions in Fig. 1A is
illustrated in Fig. 1B. Note that for both solutions the cate-
gory boundary (point where the function crosses 0.5) is in

the same place along the x-axis, but the slopes of the cate-
gorization functions differ, reflecting the increased uncer-
tainty in the case of the wide distributions. If listeners
are making decisions using the entire probability distribu-
tions, we predict different categorization slopes for differ-
ent amounts of category variance (overlap). Furthermore
the ideal observer model makes a quantitative prediction
about the amount of uncertainty (slope of the categoriza-
tion function) given the amount of overlap (variance of
the probability distributions). This describes the minimal
amount of uncertainty for an ideal observer. We also ex-
pect some amount of additional uncertainty for actual
observers in both situations due to internal and external
noise in estimating the probability distributions. This addi-
tional uncertainty should not depend on the specific distri-
butions of the cues and should be the same for observers
categorizing both pairs of distributions.

Fine grained sensitivity to acoustic–phonetic cues is re-
quired for listeners to track the distributions of acoustic–
phonetic cues. Early models of speech perception treated
within-category variance as noise. Mechanisms such as
categorical perception were thought to define ideal bound-
aries along a continuum, with all exemplars within those
boundaries treated as identical category members (Liber-
man, Harris, Hoffman, & Griffith, 1957; Liberman, 1996).
However, considerable evidence has accumulated that lis-
teners are sensitive to within-category differences. For
example, differences in: reaction time (Pisoni & Tash,
1974), category goodness ratings (Miller & Volaitis,
1989), degree of semantic priming (Andruski, Blumstein,
& Burton, 1994), patterns of eye movements (McMurray,
Tanenhaus, & Aslin, 2002), and neural patterns of activity
(Blumstein, Myers, & Rissman, 2005) have all been docu-
mented for within-category VOT differences. In addition
both infants and adult listeners use distributional informa-
tion to find the number of categories along a continuum
(Maye & Gerken, 2000; Maye, Weiss, & Aslin, 2008; Maye,
Weker, & Gerken, 2002) and the optimal boundary be-
tween categories (Clarke & Luce, 2005). These results are
consistent with an ideal observer model. What has thus
far not been shown, however, is that listeners are sensitive
to the entire probability distribution of an acoustic–pho-
netic cue, and in particular the variances as predicted by
Eq. (1).

We tested this hypothesis by manipulating the proba-
bility distributions of tokens along a VOT continuum in a
category judgement task. In English, VOT (the time be-
tween the release burst and the onset of voicing in the vo-
wel) is the dominant cue to voicing (Lisker & Abrahmson,
1964) in word initial position. Short VOTs correspond to
words such as ‘‘beach” and long VOTs to words such as
‘‘peach”. The stimuli were tokens from two probability dis-
tributions (shown in Fig. 1A) centered around 0 and 50 ms
(the prototypical category means for ‘‘beach” and ‘‘peach”
in American English). For one group of participants, stimuli
came from a pair of distributions with relatively wide var-
iance (14 ms), and for another group, stimuli came from a
pair of distributions with relatively narrow variance
(8 ms). Importantly both pairs of distributions contain
the same number of tokens overall and the same category
means. Participants categorized the stimuli by clicking on

Fig. 1. (A) Probability distributions of tokens that listeners categorized in
the narrow condition (dark lines) and wide condition (light lines). (B)
Optimal response curves calculated from the probability distributions
using Eq. (1) for the narrow condition (dark lines) and wide condition
(light lines).
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INCREMENTAL BELIEF UPDATING: Adapting to changes in 
the underlying distributions

Don’t have access to the “true” likelihood distribution, but uncertain beliefs about 
category parameters

p(θc) = p(µc,σ
2
c )

Have to infer distributions (means and variances) and intended categories together:
p(µc,σ

2
c , c|x) ∝ p(x|µc,σ

2
c , c)p(µc,σ

2
c )p(c)

Combine prior beliefs and current experience to do incremental belief updating.
Compare predictions from beliefs with currently processed speech.  Use prediction 
error to update.

LOOKING FORWARD
Speakers are characterized by the parameters 
of their category likelihoods p(x|µc,σ

2
c )

Prior beliefs about category parameters 
p(µc,σ

2
c ) are really a prior over speakers

What priors should a rational learner have? 
Prior should be , and depends 
on what kind of variability there is across environments 
(Anderson 1991):
Random variation
every time environment changes.
Variation due to different speakers: spiky.  Prior is 
strong near familiar speakers (allows “swapping in” of 
right likelihood), and weak everywhere else.
Structured variation due to speaker groups: lumpy.  
Prior is strong, near highly familiar individuals (e.g. 
mom), and broader and less strong around similar-
sounding groups (e.g. people with German accents).  Al-
lows .

COMPENSATION FOR COARTICULATION 
(Modeling: Sonderegger and Yu, 2010)

on characteristics of following vowel.
Listeners compensate for this by shifting their 
category boundaries.

on second vowel 
p(V1|x, V2) ∝ p(x|V1, V2)p(V1)

vowel in bV1bV2 words (V1 is /a/ or /e/, V2 is 
/a/ or /i/).
Compute cue distribution for each V1, V2 
combination based on production data.

V2 = /a/
V2 = /i/

/a//e/

2008) with VOWEL CONTEXT (/a/ or /i/) and CONTINUUM
(1–9) as fixed effects, and random effects of SUBJECT and
BLOCK (test token number) on the intercept. As a measure of
model quality, Nagelkerke’s pseudo-R2 was 0.64, relative to a
model with only the intercept. There were significant effects
of CONTINUUM and VOWEL CONTEXT (p < 0.001), as well
as their interaction (p < 0.05) The effect of VOWEL CON-
TEXT was an increase in V1=/a/ responses for V2=/i/ com-
pared to V2=/a/, in agreement with the results of Beddor et al.
(2002): native English listeners appear to perceptually com-
pensate for the coarticulatory effects of a following vowel.

Model-predicted perceptual responses
To predict expected identification curves using Eqn. 2, we
need the category means of /a/ and /e/ (V1) in the context
of following /a/ or /i/ (V2), and category variances for V1
in V2=/a/ and V2=/i/ contexts.4 (Recall that we are assum-
ing equal variances of V1=/a/ and V1=/i/, given the following
context.) Eqn. 2 also includes the relative probability ( f1/ f2)
of V1=/a/ and V1=/i/ in each V2 context. We assume that
f1/ f2 = 1 following the training phase.

The category mean and variance parameters were esti-
mated from two production studies. Category means were
based on 40 productions of the form bV1bV2 (10 for each
combination of V1∈{a,e} and V2∈{a,i}) by the speaker
whose speech was the basis of the training and test tokens.
Category variances were calculated from productions of ini-
tial stressed /adV1CV2/ sequences (V1&2=/a/, /e/, or /i/ and
C=/p/ or /b/), each repeated ten times in random order, by
four male, phonetically-trained native English speakers. No
subjects who participated in the perception experiment par-
ticipated in the production studies as well.

We thus assumed that during the experiment, subjects
adjusted their expectation of category means to match the
speaker they were hearing, but that their category variances
reflected variation across speakers.5

For all production data, formant values were measured at
the midpoint of the target V1. Means and variances were cal-
culated over Bark-transformed F1 values for V1. Variances
for V1 when V2=/a/ were taken to be the mean of the vari-
ances for /aCa/ stimuli and for /eCa/ stimuli. Variances for V1
when V2=/i/ were calculated similarly. The resulting model
parameters are listed in Table 1.

The predicted identification curves for V2=/a/ and V2=/i/
contexts are given in Fig. 2. For comparison with the experi-
mental results, Step 1 was taken to be the mean of µc2 (where
c2 is “V1=/e/”) in V2=/a/ and V2=/i/ contexts, and Step 9 was

4Nearey & Hogan (1986) propose two models for deriving iden-
tification curves from production data. Their ‘NAPP’ model is sim-
ilar to the present model, but is not derived from an RA viewpoint.
We also map production data to model parameters differently.

5Another interpretation of these category variances, suggested
by a reviewer, is that subjects assume the tokens have category vari-
ances typical of a single speaker, but also account for some “noise”
in perception, beyond the variance observed in the production data
of an individual speaker.

Table 1: Model parameters obtained from the production
study, where c1 is “V1=/a/”, c2 is “V1=/e/.” B=Bark.

V2 µc1 µc2 σC
2 +σS

2

/a/ 6.69 B 4.67 B 0.568 B2

/i/ 6.76 B 4.26 B 0.619 B2

taken to be the mean of µc1 (where c1 is “V1=/a/”) in V2=/a/
and V2=/i/ contexts.

Qualitatively, the fit between the experimental and model-
predicted curves in Fig. 2 is very good, without fitting any free
model parameters to the production data. Both experimental
and model curves show a rightward shift for V2=/a/ context,
and the predicted slope at the crossover point for both pairs of
curves are approximately the same.6 However, the quality of
the fit depends on how rational model parameters are derived
from the production study, and should be interpreted with
caution. For example, category variances (σ2

C + σ2
S) would

be smaller if based on tokens from a single speaker rather
than several speakers, making the slope of the rational model
curves steeper.
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Figure 2: Dashed lines: Proportion of /a/ responses for V2=/a/
(right curve) and V2=/i/ (left curve) contexts, across all sub-
jects. Error bars are 95% confidence intervals, based on
individual-subject proportions. Solid lines: Predicted iden-
tification curves, based on production data. Dotted line:
Crossover point (rate=0.5).

Discussion
We have illustrated a rational model of perceptual compen-
sation effects and shown that, given a simple probabilistic
model for the observed values of an acoustic-phonetic cue

6The correlation between the two sets of curves is very high (r =
0.987, p < 0.001), indicating good qualitative agreement.

378

PERCEPTUAL MAGNET EFFECT 

category mean
Separate variability due to category variance 
and production/perception noise.
Infer speaker’s intended target cue value 
based on observed cue value and knowledge 
of distributions (category variance and noise)
p(xT |xS) ∝

∑

c

p(xS |xT , c)p(xT |c)p(c)

The prototype model does not give independent justification for
the assumption that prototypes should exert a pull on neighboring
speech sounds; several models cannot account for better than
chance within-category discriminability of vowels. Other models
give explanations of how the effect might occur but do not address
the question of why it should occur. Our rational model fills these
gaps by providing a mathematical formalization of the perceptual
magnet effect at Marr’s (1982) computational level, considering
the goals of the computation and the logic by which these goals
can be achieved. It gives independent justification for the optimal-
ity of a perceptual bias toward category centers and simultaneously
predicts a baseline level of within-category discrimination. Fur-
thermore, our model goes beyond these previous models to make
novel predictions about the types of variability that should be seen
in the perceptual magnet effect.

Theoretical Overview of the Model

Our model of the perceptual magnet effect focuses on the idea
that we can analyze speech perception as a kind of optimal statis-
tical inference. The goal of listeners, in perceiving a speech sound,
is to recover the phonetic detail of a speaker’s target production.
They infer this target production using the information that is
available to them from the speech signal and their prior knowledge
of phonetic categories. Here we give an intuitive overview of our
model in the context of speech perception, followed by a more
general mathematical account in the next section.

Phonetic categories are defined in the model as distributions of
speech sounds. When speakers produce a speech sound, they
choose a phonetic category and then articulate a speech sound
from that category. They can use their specific choice of speech
sounds within the phonetic category to convey coarticulatory in-
formation, affect, and other relevant information. Because there
are several factors that speakers might intend to convey, and given
that each factor can cause small fluctuations in acoustics, we
assume that the combination of these factors approximates a
Gaussian, or normal, distribution. Phonetic categories in the model
are thus Gaussian distributions of target speech sounds. Categories
may differ in the location of their means, or prototypes, and in the
amount of variability they allow. In addition, categories may differ
in frequency so that some phonetic categories are used more
frequently in a language than others. The use of Gaussian phonetic
categories in this model does not reflect a belief that speech sounds
actually fall into parametric distributions. Rather, the mathematics
of the model are easiest to derive in the case of Gaussian catego-
ries. As discussed later, the general effects that are predicted in the
case of Gaussian categories are similar to those predicted for other
types of unimodal distributions.

In the speech sound heard by listeners, the information about the
target production is masked by various types of articulatory, acous-
tic, and perceptual noise. The combination of these noise factors is
approximated through Gaussian noise, so that the speech sound
heard is normally distributed around the speaker’s target produc-
tion.

Formulated in this way, speech perception becomes a statistical
inference problem. When listeners perceive a speech sound, they
can assume it was generated by selecting a target production from
a phonetic category and then generating a noisy speech sound on
the basis of the target production. Listeners hear the speech sound

and know the structure and location of phonetic categories in their
native language. Given this information, they need to infer the
speaker’s target production. They infer phonetic detail in addition
to category information in order to recover the gradient coarticu-
latory and nonlinguistic information that the speaker intended.

With no prior information about phonetic categories, listeners’
perception should be unbiased, given that under Gaussian noise,
speech sounds are equally likely to be shifted in either direction. In
this case, listeners’ safest strategy is to guess that the speech sound
they heard was the same as the target production. However,
experienced listeners know that they are more likely to hear speech
sounds near the centers of phonetic categories than speech sounds
farther from category centers. The optimal way to use this knowl-
edge of phonetic categories to compensate for a noisy speech
signal is to bias perception toward the center of a category, toward
the most likely target productions.

In a hypothetical language with a single phonetic category,
where listeners are certain that all sounds belong to that category,
this perceptual bias toward the category mean causes all of per-
ceptual space to shrink toward the center of the category. The
resulting perceptual pattern is shown in Figure 2a. If there is no
uncertainty about category membership, perception of distant
speech sounds is more biased than perception of proximal speech
sounds so that all of perceptual space is shrunk to the same degree.

In order to optimally infer a speaker’s target production in the
context of multiple phonetic categories, listeners must determine
which categories are likely to have generated a speech sound. They
can then predict the speaker’s target production on the basis of the
structure of these categories. If they are certain of a speech sound’s
category membership, their perception of the speech sound should
be biased toward the mean of that category, as was the case in a

Actual Stimulus

Perceived Stimulus

(a)

Actual Stimulus

Perceived Stimulus

(b)

Figure 2. Predicted relationship between acoustic and perceptual space in
the case of (a) one category and (b) two categories.

757INFLUENCE OF CATEGORIES ON PERCEPTION

RECALIBRATION (AND SELECTIVE ADAPTATION)

Behavior: Vroomen et al. (2007)
Recalibration: ambiguous acoustic cue (e.g. /b/-/d/) paired with disambiguating infor-
mation (video of speaker producing /b/).  More /b/ responses to audio-only test items, 
but effect fades with more cumulative exposure.
Selective adaptation: prototypical /b/ repeated many times.  Fewer /b/ responses.

Modeling: Kleinschmidt & Jaeger (2011, 2012)
Trial-by-trial adaptation predictions based on stimulus distribution:

McGurk effect creates not-fully-ambiguous /b/ percept.  Initial 
mean shift results in more /b/ likelihood for acoustically inter-
mediate test stimuli, but as variance decreases likelihood de-
creases as well for test stimuli, leading to decrease in recali-
bration effect.

Repeated exposure to same prototypical /b/ results in lower 
variance and thus less /b/ likelihood for test stimuli and fewer 
/b/ responses

Predictions: intermediate adaptation to not fully ambiguous or prototypical adaptors.  
Replicated on MTurk (plus 
two intermediate conditions).  
Fit model to ambiguous and 
prototypical conditions; pre-
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One speaker

p(θ)

p(θ)
∑

s

p(θ|speaker = s)p(s)

∑

t

p(θ|type = t)p(t)

Category parameters

There is structured variation among talkers (gender, accent, etc.)
The optimal prior is thus a hierarchical: clustered environments/talkers
This predicts:

Rapid adaptation in new environments which are dissimilar from previously encountered ones 
(e.g. Norris et al. 2003; Vroomen et a. 2007; Kleinschmidt & Jaeger 2011, 2012)

Generalization depends on similarity with previous environments and expectation of new envi.

GENERALIZATION ACROSS SPEAKERS DEPENDS ON PRIOR EXPERIENCE:
Generalization occurs when speakers are clustered together (use same set of updated beliefs).

TALKER-INDEPENDENT ACCENT ADAPTATION
(Behavior: Bradlow & Bent, 2008)

Test comprehension on Mandarin-accented test talker after training with: 1) Same 
talker.  Train on test talker. 2) Single talker.  Train on different Mandarin-accented 
talker, 3) Multiple talker.  Train on four different Mandarin-accented talkers (one 
quarter as much on each) Results: Same and multiple talker training both pro-
duce large gains in accuracy.  Single talker is no better than task control.
Why? 

talker. Either uninformative or misinformative.
Multiple talker prior is broader but averages out idiosyncrasies of in-

test talker’s speech).

Multiple
Language
Training
Test (likelihood)
Test (posterior)

| | | |l

Single

|l

Same

||

GENERALIZATION IN RECALIBRATION

Recalibration of voicing (/d/-/t/) or fricative place (/s/-/sh/) contrast.  Voicing 
generalizes from male to female talker but fricative does not.
Why? 

Male and female talkers differ systematically in fricative cues 
(spectral center of gravity), but not as much voicing cues (VOT).
Listeners thus have strong prior that male and female speakers 
should not cluster together.
Additionally, test stimuli have different acoustic cue ranges (low 
likelihood of shared cluster).

recalibration
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Category parameters

p(θ)

p(θ|xtrain)

p(θtest|xtest, xtrain)

∝ p(xtest|θ)p(θ|xtrain)
p(θtest|xtest)

∝ p(xtest|θ)

SPEECH PERCEPTION

ADAPTATION GENERALIZATION

Previous work: speech perception 
(others) and adaptation in novel en-
vironment (us) as prediction/infer-
ence in a generative model.

Proposal: speech perception/adapta-
tion across speech environments 
as prediction/inference in a generative 
model of clusters of environments.
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One speaker

RECAP


