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ABSTRACT 

When an unfamiliar word consists of phoneme 

sequences that are attested in many of the words 

that a listener already knows, it should be easier to 

incorporate into the mental lexicon. Results of 

many studies with nonword materials support this 

idea, showing that a nonce word form with such 

high phonotactic probability sounds more like a 

possible word, and is repeated and learned more 

easily. However, the inferential statistical tests that 

are typically used make it difficult to generalize 

beyond the particular set of nonword items used in 

any one study, and there are few replications. This 

paper addresses these methodological issues. It 

uses a partial replication of one earlier study in 

previously unreported data for filler items from a 

second, to describe how the use of mixed-effects 

models can resolve problems with prior analyses.   

1. INTRODUCTION 

Nonwords are useful in designing experiments to 

study how the mental lexicon is organized, because 

they let us control other properties of words, such 

as familiarity or age of acquisition, so as to focus 

on the phonetic form. Experiments using nonwords 

suggest that having a phonetic form that is more 

typical of the other words in the language makes a 

new word easier to repeat [6] and to learn [5]. Such 

experiments have also suggested that a form can be 

more or less typical in several ways. For example, 

in English, more disyllables are stressed on the 

first syllable than on the second, and more words 

contain the phoneme sequences [ik] or [ft] than 

contain [auk] or [fk]. These aspects of typicality 

combine, so that native speakers of English can be 

more accurate when repeating nonwords with the 

more typical stress pattern that also contain more 

typical phoneme sequences than when repeating 

nonwords with just one of these two properties [6].   

The typicality of a phoneme sequence is often 

estimated by its log frequency in a sample lexicon, 

a quantity that is called phonotactic probability. 

For example, using the Hoosier Mental Lexicon as 

a sample English lexicon, we calculate phonotactic 

probabilities of -9.8 and -11.8 for [ik] and [ft] as 

opposed to -14.6 and -15.6 for [auk] and [fk]. In 

one study [2], we made recordings of 22 pairs of 

nonwords that contained such high- versus low-

probability sequences, and played them to 104 

English-speaking children aged 3 through 8 years 

to repeat. The children made more mistakes on the 

low-probability items. The magnitude of this 

probability effect differed across the subjects and 

was correlated with vocabulary size. A later study 

with an older group of children [3] shows a similar 

effect, and also that children with specific language 

impairment (LI) make even more errors on low-

probability items than do their age peers. 

While the later study found similar results, we 

cannot call it a replication. The studies differ not 

just in using different samples of children, but also 

in selecting different high- versus low-probability 

sequences embedded in different nonword items. 

Both sets of items also differed from the items in 

[5] and [6]. Moreover, the statistical tests in all 

four studies evaluate the contrast between high- 

and low-probability items using ANOVA and other 

related ordinary least squares (OLS) regression 

models in ways that make the inferences subject to 

the “language-as-fixed-effect fallacy” [1]. Thus, 

we cannot generalize confidently from any one 

study without an exact replication. These facts lead 

us to ask whether the different studies do in fact 

show the same effect of phonotactic probability.  

2. REPLICATION 

To address the question, we reanalyzed data
i
 from 

the studies reported in [2] and [3], including data 

for 10 filler items in [3] which happened to be 5 of 

the 22 target nonword pairs in [2] (Table 1). These 

shared items constitute a kind of replication of the 

first study, although it is not exact, because the 

nonwords were recorded by a male speaker of the 

Midlands dialect in [2] and by a female speaker of 

the Northern dialect in [3]. So the audio stimuli as 

well as the children’s responses were obtained in a 



multi-level sampling scheme, with items selected 

first from the “population” of possible types and 

then stimulus tokens sampled from a “population” 

of possible utterances by a phonetically-trained 

talker selected from the population of speakers. 

Table 1: The 10 nonword types (with target low- vs 

high-probability VC or CC sequence underlined), the 

mean wordlikeness of audio stimuli used in [2] (rated 

on a 1-5 Likert scale in a norming study), and the 

position-specific log probabilities of target sequences 

calculated using the HML, as described in [2].  

(underlined) target 

sequence, nonword 

wordlike- 

ness (1-5) 

log sequence 

frequency 

low high low high low high 

dugn!ted t!gn!dit 2.68 3.03 –14.59 –10.53 

auft!g" aunt!ko 2.43 3.11 –14.59   –8.96 

aukp#de ikb!ni 2.41 2.06 –14.59   –9.77 

næfk!tu g!ft!daı 2.73 2.44 –15.57 –11.79 

d$gd!ne tikt#po 2.43 2.54 –15.57   –9.45 

Table 2: Number of children in each group, and mean 

values (and standard deviations) for their ages and 

scores from tests of receptive (PPVT) and expressive 

vocabulary (EVT in [2], EOWPVT in [3]). 

group (N) age 

months 

PPVT 

raw 

PPVT 

standard 

E(...)VT  

raw 

 E  (104)   66 (19)   86 (25) 114 (13)   86 (25) 

VA  (20) 100 (25) 127 (24) 115  (6) 102 (19) 

CA  (22) 124 (20) 145 (15) 114 (15) 112 (17) 

 LI   (21) 131 (18) 126 (19)   94 (11)   90 (17) 

We analyzed productions by four groups of 

participants (Table 2). From [3], we had data for 

children with LI (as assessed by the CELF) and for 

children who were recruited to provide control 

groups matched for chronological age (group CA) 

or for raw receptive vocabulary size (group VA) as 

measured by the PPVT. From [2], we had data for 

104 children (group E), of whom 66 were younger 

than the youngest child in group VA. We scored 

the target VC or CC of each filler item in [3] as in 

[2], by counting correct features, evaluating place, 

manner, and voicing for each C, and high/mid/low, 

front/central/back, and long/short for each V.  

3. ANALYSIS BY ITEMS  

Fig. 1 plots mean diphone accuracy as a function 

of phonotactic probability for the ten shared items. 

Data for group E are on the left. The solid line is 

an OLS regression fit to the 10 datapoints. This is 

the same by-items analysis we used in [2] for the 

larger set of 44 items, shown here by the dashed 

line. The correlation was significant for the larger 

set (F[1,42]=10.78, p<0.01, R
2
=0.19), but not for 

the smaller subset of 10 means shown in the plot. 

The discrepancy is due to the datapoints for [auk] 

and [aun]. We identified these as outliers in [2] as 

well, and their inclusion in these 10 shared items 

dilutes the relationship between the accuracy score 

and the diphone’s phonotactic probability. 

Figure 1: Mean diphone accuracy for each nonword 

as a function of the sequence frequency, with lines for 

regression curves fit to means for different groups.  

 

These two items are closer to the main cloud of 

datapoints in the right panel of Fig. 1, which plots 

mean accuracy scores for the audio stimuli in the 

replication study. The relationship again is positive 

but not significant when evaluated using the same 

statistical model. Here the failure to reproduce the 

results of the larger study reported in [2] could be a 

ceiling effect. The means for these mostly older 

children are closer to the maximum possible score.  

Our failure to reproduce even the primary result 

of the main by-items analyses in [2] reinforces the 

importance of replication, as well as the need for 

cautious inference from the types of statistical tests 

used in the earlier study. The apparent ceiling 

effect highlights another problem as well. An OLS 

test assumes that the response variable is normally 

distributed. Our six-point accuracy scores violate 

this assumption. They are count data, and will be 

approximately normal only if they are not too far 

from the middle number of 3 features correct. Most 

of the datapoints are well above this middle region. 

4. ANALYSIS BY SUBJECTS  

For the earlier report on these data in [2], we used 

OLS methods in two types of analysis by subjects, 

for which we treated phonotactic probability as a 

nominal variable by dividing items into high- and 

low-probability groups in order to make it easier to 



estimate interaction effects. First we applied a 

repeated-measures ANOVA to the raw accuracy 

scores. For this analysis, we also treated age as a 

nominal variable, by dividing the data into three 

unbalanced groups for 3- and 4-year-olds (N=43), 

5- and 6-year-olds (N=38), and 7- and 8-year-olds 

(N=23). This test showed significant main effects 

both of probability and of age group, as well as a 

significant interaction. The low-probability items 

were less accurate than the high-, the youngest 

children were less accurate than the older, and they 

were especially so on the low-probability targets.  

For the second type of by-subjects analysis, we 

took better advantage of the careful design of our 

nonwords. We had created the 44 items to pit high- 

versus low-probability in pairs of sequences that 

differed minimally (e.g., [ft]:[fk]) and embedded 

them in paired nonword frames that we chose to 

minimize other potentially confounding differences 

in properties such as the prosodic position of the 

matched sequences within their frames and the 

paired nonwords’ mean wordlikeness ratings.  We 

calculated a new response variable by subtracting 

the accuracy of the low-frequency item from that 

of the paired high-frequency item. This difference 

score has the advantage that the values cluster just 

above 0, the middle of the possible range from -6 

to +6, making OLS analyses less inappropriate.  

We evaluated the differences scores by a t-test 

and by several OLS regressions. The t-test showed 

that the mean difference is positive, confirming 

that the 104 children’s productions tend to be more 

accurate for the high-probability items than for the 

low. The first regression analysis confirmed that 

the magnitude of this effect correlates with age, 

which we could treat as a continuous variable, 

overcoming the problem of unbalanced age group 

sizes in the RM-ANOVA. A second regression 

showed further that the size of the probability 

effect is related to the size of the child’s expressive 

vocabulary, as estimated by the log of the EVT raw 

score. Because the number of words that a child 

knows how to say grows tremendously in early 

childhood, these two relationships could be the 

same result. We therefore did a third regression 

that included both age and the log EVT raw score. 

The EVT explained a significant proportion of the 

variation in children’s difference scores even after 

age was partialled out, but age was not significant 

after EVT was partialled out.  

When we used these two types of by-subjects 

analysis to probe the weaker effect of phonotactic 

probability in the subset of 5 item pairs in the left-

hand panel of Fig. 1, we reproduced some, but not 

all of our results reported in [2] for the full set of 

22 item pairs. Specifically, the ANOVA showed 

significant main effects of phonotactic probability 

(F[1,101]=35.6, p<0.001) and age (F[2,101]=16.7, 

p<0.001), but no significant interaction. The two-

tailed t-test confirmed that the difference between 

paired high- and low-probability items is generally 

positive (mean=0.33, t[103]=5.89, p<0.001), but 

the tests regressing this child-by-child estimate of 

the size of the probability effect against age and 

EVT raw score found no relationship with either.  

Our failure to reproduce that result from [2] is 

because the outlier pair [aun]:[auf] has a huge 

effect on each child’s mean difference in accuracy 

between high- and low-probability items. The fact 

that there are just as many subjects in these tests as 

in the analogous by-subjects analyses for the larger 

set of items makes this a very clear example of the 

“language-as-fixed-effect fallacy” [1].  

5. MIXED-EFFECTS MODELS 

As noted in [4], we can avoid the fallacy by using 

mixed-effects models such as (1), which is the base 

or “empty” model for analyzing difference scores. 

(1) 

! 

differenceij = "
00

+ #
0i +$

0 j  

Here, the difference score for child i producing the 

high- versus low-probability nonwords in pair j is 

modeled in terms of an intercept !00 (which is the 

estimated grand mean of all the difference scores) 

plus the deviations from !00 for that child ("0i) and 

for that word pair (#0j). Each of the vectors of N 

deviations modeled by " and 5 deviations modeled 

by # is assumed to be a sample from a normally 

distributed population of deviations for that 

grouping factor. The fit of the model to the data is 

evaluated for a succession of choices of values for 

the !00, ", and # model parameters, to converge on 

the model that is maximally likely to have 

generated the set of N*5 difference scores.  

We can use this approach in analyzing the raw 

scores, too, by treating them as count data as in (2).  

(2) 

! 

log p / 1" p( )( ) = # 00 + $ 0i +%0 j   

This base uses the logit function to link the counts 

to the estimates for the model parameters via p, the 

estimated probability that features will be correct 

in productions of word j by child i. If the variance 

estimated for each random effect in (2) is not too 

close to 0, we can build a second, more complex 



model that adds another effect. The two models 

then can be compared by the likelihood ratio test 

(LRT), which uses the X
2
 distribution to see if one 

model is significantly more likely than the other to 

have generated the data, taking relative complexity 

into account. For example, in order to evaluate 

whether target features are more likely to be 

correct in high-probability sequences than in low-, 

we can build model (3), which is just like the base 

model in (2) except that it includes !prob, the fixed 

effect of probability, treated as a nominal variable.   

(3) 

! 

log p / 1" p( )( ) = # 0 + # prob + $ 0i +%0 j   

When we built model (3) for the original group 

E data for all 44 nonword items, we found the 

estimated value of !prob to be positive (features are 

more likely to be correct in high-probability items) 

and the LRT comparison to the base model in (2), 

showed (3) to have a better fit to the data (X
2
=6.4, 

df=1, p=0.01), confirming the result of our original 

t-test but here using an analysis that can generalize 

to other sets of items as well as to other subjects.  

When we built (2) and (3) for the data plotted 

on the right in Fig. 1, !prob again was positive and 

model (3) had a marginally better fit (X
2
=3.7, df=1, 

p=0.05). Thus, this partial replication with a small 

subset that includes the two items identified as 

outliers in [2] reproduces what seems to be a “true” 

probability effect even for the older children in [3], 

which was obscured by a ceiling effect in Fig. 1.  

Another series of models for all 44 items in [2] 

added fixed-effect terms for probability (treated as 

a continuous variable), then for age (treated as a 

three-group nominal variable as in our earlier 

ANOVA), and finally for their interaction. The last 

model was not significantly better than the simpler 

model without the added term. This suggests that 

the interaction between probability and age that we 

found in the ANOVA in [2] may be an artifact of a 

ceiling effect for the older children from that study. 

We explored this suggestion by re-building the 

series with just two age groups, differentiating the 

38 children in [2] who were at least as old as the 

youngest child in [3] from the 66 children who 

were younger. Fig. 2 plots the estimated effects. 

Each curve is a straight line when plotted in the 

logit-transformed space of the models, and bends 

here only because it approaches the asymptote of 

100% correct. The distance between the solid and 

dashed black curves is the size of the age effect in 

the simpler of the two models. The distance 

between the dashed curve and the solid gray curve 

is the size of the non-significant interaction effect 

in the most complex model in the sequence.  

In future work, we plan to see if these ceiling 

effects can be circumvented by designing age-

graded materials so that older children repeat the 

target diphones in more complex nonword frames. 

Figure 2: Mean diphone accuracy for each of the 44 

nonwords in [2] as a function of sequence frequency.  
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