Production and Communicative Efficiency

 Is production affected by considerations about efficient communication?

Noisy channel theorem

- Recall: Shannon's channel coding theorem places limits (upper and lower) on transmission rates through noise
- → Ideal coder should aim for transmission rates at channel capacity *C*, but not higher

Uniform Information Density

Given a choice, speakers prefer to keep the amount of information transmitted per unit signal uniform.

Jaeger (2006, in prep), Levy & Jaeger (2007), based on Genzel & Charniak (2002) and Aylett & Turk (2004)

→ Speakers should spread more information over more signal (where there is a choice)

Boundedly rational Bayesian inference over a noisy channel

Information Density & Auxiliary Contraction

Frank & Jaeger (2007-AMLaP; 2008-CUNY; 2008-CogSci; in prep)

Brain and Cognitive Sciences, University of Rochester

Efficient Morpho-Syntactic Production

Estimating the information carried by a contractible element

Efficient Morpho-Syntactic Production

Data

- Extracted from a corpus of spontaneous American English speech (Switchboard, 800k sentences in 650 dialogues)
 - Only cases that are contractible in American English are included (e.g. not "I have/*'ve a car".).

HAVE: e.g. 'd vs. had (>2,400 contractible cases)

NOT: n't vs. not (> 5,000 contractible cases)

- BE: e.g. 's vs. is (> 9,000 contractible cases)

Analysis

 Mixed logit model to analyze when speakers' choose full over contracted forms depending on the information

carried by it.

$$logit[p(full)] = ln \frac{p(full)}{p(reduced)} = -\beta log p(NOT | w_{i-1}) - \beta log p(NOT | w_{i+1}) + X_{Controls} \beta_{Controls} + Zb$$

- Simultaneously controlling for:
 - Position in intonational phrase
 - Complexity of upcoming material
 - Complexity of host (e.g. pronominality, number of words)
 - Speech rate and fluency (e..g presence of filled pauses)
 - Social effects (gender, education)
 - Random effects for individual differences

Replicated for

Summary

- Cases that would otherwise be more information dense are less likely to be contracted.
- → Predicted by Uniform Information Density ...

 and other accounts that predict a trade-off between the amount of signal provided and the redundancy of the linguistic unit (e.g. negation) in its context.

'Choices' at many levels in production

Utterance level: Move the triangle to the left.

Select the triangle. Move it to the left.

Phrasal level: *She already ate (dinner)*

She stabbed him (with a knife).

Word level: I read a book (that) she wrote.

Morphological level: *I've\have gone there.*

Phonological level: t/d-deletion; final cluster reduction;

vowel weakening

Phonetic level: formant energies, F1/F2 ratio, speech rate

Results

Information content of CC onset (in bits)

Results

SRC reduction

The style of life [(that was) chosen by the beatnik generation]
is designed to enhance sexual experience.

Information content of SRC onset: I(SRC | preceding noun)

High Information Environments (Producing Dispreferred Structure)

Information per word throughout discourse in Mandarin Chinese

Information Density & Resumptive Morphology in Yucatec

⁺ Linguistics, University of Rochester

Degen*+ and Jaeger* (2011-LSA)

*Brain and Cognitive Sciences, University of Rochester

Question

- Are similar biases operating during language acquisition that then induce changes in representations/distributions over representations compared to the input language?
- Such biases would also provide an explanation as to how the observed correlations between information density and speakers' preferences in production arise (via lexicalized grammaticalization)

Information – signal trade-off in acquisition

Fedzechkina, Jaeger & Newport (2011, in prep)

Brain and Cognitive Sciences, University of Rochester

The following slides are omitted since the contain unpublished materials. Thank you for understanding.

Conclusion

- In incremental production, we observe a bias to provide more linguistic signal where information density would otherwise be high, thereby lowering information density.
- During the acquisition we find the same/a similar bias at work: Learners condition the use of linguistic form in such a way that the unexpected is more likely to be marked by more linguistic signal.

wires.wiley.com/cogsci

Focus Article

On language 'utility': processing complexity and communicative efficiency

T. Florian Jaeger^{1*} and Harry Tily²

Volume 2, May/June 2011

@ 2010 John Wiley & Sons, Ltd.

Cognitive Psychology 61 (2010) 23-62

Contents lists available at ScienceDirect

Cognitive Psychology

journal homepage: www.elsevier.com/locate/cogpsych

Redundancy and reduction: Speakers manage syntactic information density

T. Florian Jaeger

Thank you!

Many thanks to our collaborators: Masha Fedzechkina, Austin Frank, Lissa Newport and Nathanial Smith

Funding: NSF 0953870, NIH 1R01HD065829, ARL Cognition & Neuroergonomics Collaborative Technology Alliance to RL; NSF Grant BCS-0844472; Provost's Award, Wilmot Award, Alfred P. Sloan Fellowship to TFJ