FROM NOMINAL CASE IN SERBIAN TO PREPOSITIONAL PHRASES IN ENGLISH

Petar Milin

Department of Psychology, University of Novi Sad Laboratory for Experimental Psychology, University of Belgrade

GENERAL BACKGROUND

- There exists huge diversity of how biological system cope with the environment
- Aristotle: human is ZOON POLITIKON
 (ζωον πολίτίκον)

We could add: ZOON PLIROFORIKON $(\zeta \omega o \nu \pi \lambda \eta \rho o \phi o \rho i \kappa o \nu)$

<u>◀◻▶◀@▶◀≧▶◀</u>≧▶

500

GENERAL BACKGROUND

- Language is our sixth sense extremely powerful input-output channel
- Language is complex adaptive system (CAS)
 The "Five Graces Group" (2009): Beckner, Ellis,
 Blythe, Holland, Bybee, Ke, Christiansen,
 Larsen-Freeman, Croft, and Schoenemann
- Information theory provides formal characterisations of parts of such a system

HISTORICAL OVERVIEW

INFORMATION THEORY AND LEXICAL PROCESSING

Amount of information
 (Kostić, 1991, 1995; Kostić et al., 2003 etc.)

$$I_e = -\log_2 \Pr_{\pi}(e)$$

$$I'_{e} = -\log_2\left(rac{\Pr_{\pi}(e)/R_{e}}{\sum_{e}\Pr_{\pi}(e)/R_{e}}
ight)$$

Family size
 (Schreuder & Baayen, 1997)

Singular/Plural dominance

(Baayen et al., 1997)

Laboratory for Experimental Psychology Novi Sad

< ロ > < 同 > < 三 > < 三 >

HISTORICAL OVERVIEW

INFORMATION THEORY AND LEXICAL PROCESSING

Entropy

(Moscoso del Prado Martín et al., 2004)

$$H = -\sum_{e} \Pr_{\pi}(w_{e}) \log_{2} \Pr_{\pi}(w_{e})$$

 $I_R = I_w - H$

 Derivational vs Inflectional entropy (Baayen et al., 2006)

INFLECTED NOUNS IN SERBIAN

	Inflected	variant		Exponent	
	Frequency	Relative		Frequency	Relative
		frequency			frequency
	$F(w_e)$	$\Pr_{\pi}(w_e)$		<i>F</i> (<i>e</i>)	$\Pr_{\pi}(e)$
planin-a	169	0.31	-a	18715	0.26
planin- <i>u</i>	48	0.09	-u	9918	0.14
planin- <i>e</i>	191	0.35	-е	27803	0.39
planin- <i>i</i>	88	0.16	-i	7072	0.10
planin- <i>om</i>	30	0.05	-om	4265	0.06
planin- <i>ama</i>	26	0.05	-ama	4409	0.06

NOMINAL CLASSES AND PARADIGMS

LEPNS Laboratory for Experimental Psychology Novi Sad < □ ▶ < ⊡ > ◀ Ξ < ≣ > Ξ 500 ►

NOMINAL CLASSES AND PARADIGMS

NS Laboratory for Experimental Psychology Novi Sad • 🗗 • Ē $\mathcal{O}\mathcal{A}\mathcal{O}$

∢

om

ama

NOMINAL CLASSES AND PARADIGMS

INFORMATION-THEORETIC PERSPECTIVE

$D(P||Q) = \sum_{e} \Pr_{\pi}(w_{e}) \log_{2} \frac{\Pr_{\pi}(w_{e})}{\Pr_{\pi}(e)}$

(Milin, Filipović Đurđević, & Moscoso del Prado Martin, 2009)

DYNAMICS OF THE CLASSES AND PARADIGMS

LEPNS Laboratory for Experimental Psychology Novi Sad ◆ □ ▶ ◀ @ ▶ ◀ 壹 ▶ ◀ 壹 ▶ 壹 ∽ � < ़

LEPNS

うへつ

Laboratory for Experimental Psychology Novi Sad

< ∃ >

< ⊒

< 🗗 ▶

< □ ▶

DYNAMICS OF THE CLASSES AND PARADIGMS

Laboratory for Experimental Psychology Novi Sad < ㅁ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 출 ♡ < ♡

DYNAMICS OF THE CLASSES AND PARADIGMS

 $\frac{f(target_e)}{f(prime_e)}$

DYNAMICS OF THE CLASSES AND PARADIGMS

Laboratory for Experimental Psychology Novi Sad < ㅁ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 로 ∽ < ়

Inflected variant					Expo	nent
Target	Frequency	Prime	Frequency	Weight		Frequency
	$F(w_e)_a$		$F(w_e)_b$	ω _e		<i>F</i> (<i>e</i>)
planin-a	169	struj-a	40	4.23	-a	18715
planin- <i>u</i>	48	struj- <i>u</i>	23	2.09	-u	9918
planin- <i>e</i>	191	struj- <i>e</i>	65	2.94	-е	27803
planin- <i>i</i>	88	struj- <i>i</i>	8	11.0	-i	7072
planin- <i>om</i>	30	struj- <i>om</i>	9	3.33	-om	4265
planin- <i>ama</i>	26	struj- <i>ama</i>	17	1.53	-ama	4409

DYNAMICS OF THE CLASSES AND PARADIGMS

INFORMATION-THEORETIC PERSPECTIVE

(Baayen, Milin, Filipović Đurđević, Hendrix, & Marelli, 2011)

LIGHTER SHADE OF PALE

- Do we (really want to) believe that we are doing on-line entropy measuring while we listen/speak/read/write?
- Information-theoretic measures must take proper epistemological positioning in our way of thinking about language
- Levels of analysis (Marr, 1982):
 - computational: what does the system do, and why
 - algorithmic (representational): how does the system do, how it uses information
 - implementational: physical (biological) realisation

FPNS

Laboratory for Experimental Psychology Novi Sad

< □ ▶

LANGUAGE AS A COMPLEX ADAPTIVE SYSTEM

- COMPUTATIONALLY
 Information theory is essential for understanding language as CAS
 It characterises what the system is doing
- ALGORITHMICALLY

A simple model based on learning principles can give us insights into how language as CAS makes these dynamics

PROCESSING MORPHOLOGY: STANDARD MODEL

LEPNS Laboratory for Experimental Psychology Novi Sad 고 ▶ < (리 ▶ < 로 ▶ < 로 ▶ < 로 > 으 <

FPNS

Laboratory for Experimental Psychology Novi Sad

┥□▶ ◀┌┛▶ ◀ ≣

PROCESSING MORPHOLOGY: AMORPHOUS MODEL

NAIVE DISCRIMINATIVE LEARNING PRINCIPLES

- Links between orthography (cues) and semantics (outcomes) are established through discriminative learning
 - Rescorla-Wagner discriminative learning equations (Rescorla & Wagner, 1972)
 - Equilibrium equations (Danks, 2003)
- The activation for a given outcome is the sum of all association weights between the relevant input cues and that outcome

Laboratory for Experimental Psychology Novi Sad

↓

- cues: letters and letter combinations
- outcomes: meanings

RESCORLA-WAGNER EQUATIONS

RECURSIVE DISCRIMINATIVE LEARNING

$$V_i^{t+1} = V_i^t + \Delta V_i^t$$
 with

$$\Delta V_{i}^{t} = \begin{cases} 0 & \text{if } \text{ABSENT}(C_{i}, t) \\ \alpha_{i}\beta_{1}\left(\lambda - \sum_{\text{PRESENT}(C_{i}, t)} V_{i}\right) & \text{if } \text{PRESENT}(C_{i}, t) & \text{HPRESENT}(O, t) \\ \alpha_{i}\beta_{2}\left(0 - \sum_{\text{PRESENT}(C_{i}, t)} V_{i}\right) & \text{if } \text{PRESENT}(C_{i}, t) & \text{ABSENT}(O, t) \end{cases}$$

- connection strength increases if cue is informative
- it decreases if cue is not discriminative
- the larger the set of cues, the smaller the individual connections

EXAMPLE LEXICON

Word	Frequency	Lexical Meaning	Number
hand	10	HAND	
hand <mark>s</mark>	20	HAND	PLURAL
land	8	LAND	
land <mark>s</mark>	3	LAND	PLURAL
and	35	AND	
sad	18	SAD	
as	35	AS	
lad	102	LAD	
lads	54	LAD	PLURAL
lass	134	LASS	

t)

Laboratory for Experimental Psychology Novi Sad

↓ □ ▶ < □ ▶ < □ ▶ < □ ▶</p>

LEPNS

500

Э

THE RESCORLA-WAGNER EQUATIONS APPLIED

lepns

Laboratory for Experimental Psychology Novi Sad

Laboratory for Experimental Psychology Novi Sad

500

(日)

< □ ▶

DANKS EQUILIBRIUM EQUATIONS

STABLE STATE

 If the system is in the stable state, connection weights to a given meaning can be estimated by solving a set of linear equations

 V_i : association strength of *i*-th cue C_i to outcome O

 V_i optimises the conditional outcomes given the conditional co-occurrence probabilities of the input space

FROM WEIGHTS TO MEANING ACTIVATIONS

The activation a_i of meaning i is the sum of its incoming connection strengths:

$$a_i = \sum_j V_{ji}$$

- The greater the meaning activation, the shorter the response latencies
 - the simplest case: $RTsim_i \propto -a_i$
 - to remove the right skew: $RTsim_i \propto \log(1/a_i)$

THE NAIVE DISCRIMINATIVE LEARNING

- Basic engine is parameter-free, and driven completely and only by the language input
- The model is computationally undemanding: building the weight matrix from a lexicon of 11 million phrases takes about 10 minutes
- Full implementation in R (ndl package on CRAN)

IFPNS

Laboratory for Experimental Psychology Novi Sad

↓ □ ▶ < □ ▶ < □ ▶ < □ ▶</p>

SERBIAN NOMINAL CASE PARADIGMS

Training set: 270 nouns in 3240 inflected forms

Inflected variant					Ехро	onent
Target	Frequency	Prime	Frequency	Weight		Frequency
	$F(w_e)_a$		$F(w_e)_b$	ω_e		<i>F</i> (<i>e</i>)
planin-a	169	struj-a	40	4.23	-a	18715
planin- <i>u</i>	48	struj- <i>u</i>	23	2.09	-u	9918
planin- <i>e</i>	191	struj- <i>e</i>	65	2.94	-е	27803
planin- <i>i</i>	88	struj- <i>i</i>	8	11.0	-i	7072
planin- <i>om</i>	30	struj- <i>om</i>	9	3.33	-om	4265
planin- <i>ama</i>	26	struj-ama	17	1.53	-ama	4409

NS

⊒

500

Laboratory for Experimental Psychology Novi Sad

∢ ≣ ▶

< □ ▶

< ⊡ >

. ₹

►

EXPECTED AND OBSERVED COEFFICIENTS

EXPECTED AND OBSERVED COEFFICIENTS

LEPNS Laboratory for Experimental Psychology Novi Sad ◀ ᄆ ▶ ◀ ㈜ ▶ ◀ 호 ▶ ◀ 호 ▶ 호 ∽ ੧ < <

SUMMARY OF RESULTS ON SERBIAN DATA

- Relative entropy effects persist in sentential reading
- They are modified, but not destroyed by the prime
- The interaction with masculine gender follows from the distributional properties of the lexical input
- The interaction with nominative case remains unaccounted; it could be caused by syntactic functions and meanings (cf., Kostić, 2003)
- Paradigmatic effects can arise without representations for complex words or representational structures for paradigms

ENGLISH PREPOSITIONAL PHRASE PARADIGMS

Training set: 11,172,554 two and three-word phrases from the British National Corpus, comprising 26,441,155 word tokens

	Phrase			Preposition	
	Frequency	Rel. freq.		Frequency	Rel. freq.
	$F(p_p)$	$\Pr_{\pi}(p_p)$		<i>F</i> (<i>p</i>)	$\Pr_{\pi}(p)$
<i>on a</i> plant	28608	0.279	on	177908042	0.372
<i>in a</i> plant	52579	0.513	in	253850053	0.531
<i>under a</i> plant	7346	0.072	under	10746880	0.022
<i>above a</i> plant	0	0.000	above	2517797	0.005
<i>through a</i> plant	0	0.000	through	3632886	0.008
<i>behind a</i> plant	760	0.007	behind	3979162	0.008
<i>into a</i> plant	13289	0.130	into	25279478	0.053

EXPECTED AND OBSERVED COEFFICIENTS

LEPNS Laboratory for Experimental Psychology Novi Sad ◆ ロ ▶ ◀ @ ▶ ◀ 毫 ▶ ◀ 重 ▶ 重 ∽ ९ ...♡

SUMMARY OF RESULTS ON ENGLISH DATA

- Phrasal paradigmatic effect is modelled correctly, and without representations for phrases
- Again, we observed prototype and exemplar interplay, as expressed by the prepositional relative entropy, without explicit linkage between the two
- This confirms that syntactic context is relevant for word processing
- Crucially, word's syntactic realisation raises its paradigmatic structures

THE MEANING OF RELATIVE ENTROPY

- Q What connections in our model carry information about Relative Entropy?
 - Inflectional exponents or prepositions are not at all discriminative

Laboratory for Experimental Psychology Novi Sad

Laboratory for Experimental Psychology Novi Sad

◀◻▶◀@▶◀≧▶

< ロ > < 同 > < 三 > < 三 >

- They are present (active) in many words
- Contrariwise, base cues are those that give support for the particular realisation of inflected variants or phrases
- They carry functional load which we measure as Relative Entropy

THE MEANING OF RELATIVE ENTROPY

- From the cognitive perspective:
 - words are part of our mental representations
 - they denote what denotee does in reality
 - this seems to be encoded in our personal experience
 - and, more importantly, in our sixth-sense language
- From the linguistic perspective:
 - this puts some challenge to the notion of compositionality
 - part of knowledge about paradigms are present in the base

CONCLUDING REMARKS

- Language as an COMPLEX ADAPTIVE SYSTEM has very rich dynamics, but optimality constraints
- Information theory is a fruitful tool that helps us understanding what are these constraints and why they emerge
- Relative Entropy does a beautiful job in revealing nature of WORDS and theirs PARADIGMS and CLASSES
- It even gives us insights into dynamics of words' paradigmatics

Laboratory for Experimental Psychology Novi Sad

< ロ > < 同 > < 三 > < 三 >

CONCLUDING REMARKS

- Naive Discriminative Learning machinery is a simple model which does calculus of connectivity
- In Marrian spirit, it can be seen just one possible algorithmic realisation of Bybee's computational Network Model
- It is probably way to simple, but does not require hard statistics on the hidden layer
- It is useful for detailed linguistic and psychological analysis
- Please, help us make it better! ©

http://cran.opensourceresources.org/web/packages/ndl/index.html

Laboratory for Experimental Psychology Novi Sad

Sar

◀◻▶◀@▶◀≧▶

COLLABORATORS

R. Harald Baayen, University of Alberta Antti Arppe, University of Helsinki

Marco Marelli, University of Milano-Bicocca

Peter Hendrix, University of Alberta

THANK YOU!

Department of Psychology Faculty of Philosophy University of Novi Sad Laboratory for Experimental Psychology Faculty of Philosophy University of Belgrade

↓□ ▶ < ⊡ ▶ < ⊡ ▶ <</p>

5900