Information-theoretic approaches to syntactic processing

Cornell University Linguistics Department

Thank you:

Jiwon Yun

Zhong Chen

Tim Hunter

sentence comprehension

hard

reading times
error scores
eye fixations
scalp potentials

leading idea

Q. when is comprehension more (vs less) difficult?

A. where more (vs less) information is conveyed

choice of continuation informs the hearer

the boy eats shy... the boy eats using... the boy eats like... the boy eats... the boy eats the... the boy eats his... the boy eats at... the boy eats of... the boy eats went...

conditional entropy $\sqrt{3}$ uncertainty or this distribution probability (lets pretend) $\sqrt{10 \times 10^{-25}}$ the boy eats like a hippopotamous the boy eats the dog with a spoon the boy eats his sister's bicycle the boy eats at Denny's frequently the boy eats of the forbidden fruit the boy eats went for a walk

 1.0×10^{-6} 0.0001 0.0005 0.00001 1.0×10^{-66} 0.0

fluctuation

H(Derivation | Prefix = "the boy eats")

H(Derivation | Prefix = "the boy eats his")

any downward change quantifies information gained from "his"

entropy reduction hypothesis

observed processing effort reflects decreases in H_i

where H_i abbreviates $H(Derivation|Prefix = w_{0\cdots i})$

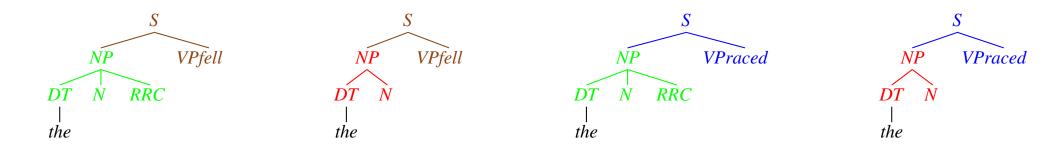
outline

Entropy reduction studies relative clauses in English and Korean

How does it work? computing $\downarrow H_i$

Why does it work? reflections on information theory & linguistics

garden path sentences

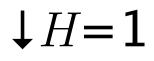

Bever 70

naive probabilistic grammar

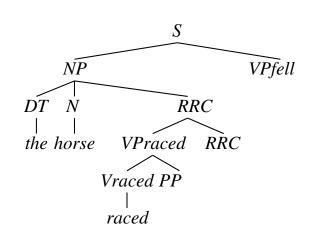
1.00	\mathbf{S}	\rightarrow	NP VP
0.88	NP	\rightarrow	DT NN
0.12	NP	\rightarrow	NP RRC
1.00	PP	\rightarrow	IN NP
1.00	RRC	\rightarrow	Vppart PP
0.50	VP	\rightarrow	Vpast
0.50	VP	\rightarrow	Vppart PP
1.00	DT	\rightarrow	the
0.50	NN	\rightarrow	horse
0.50	NN	\rightarrow	barn
0.50	Vppart	\rightarrow	groomed
0.50	Vppart	\rightarrow	raced
0.50	Vpast	\rightarrow	raced
0.50	Vpast	\rightarrow	fell
1.00	IN	\rightarrow	past

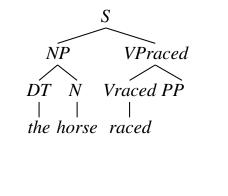
Hale JPR 03

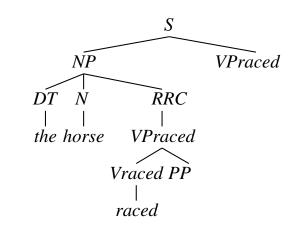
the

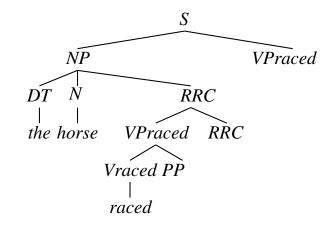


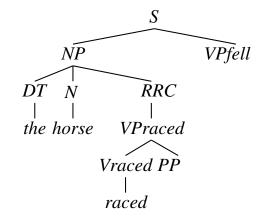
entropy: 4.65 bits

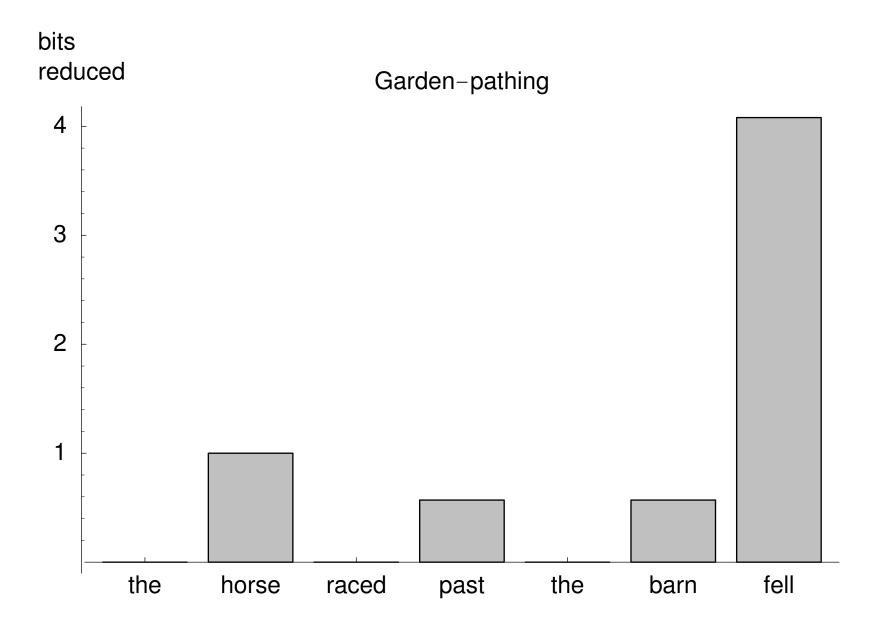

the horse




entropy: 3.65 bits


the horse raced




 $\downarrow H = none$

entropy: 5.2 bits


last word gives 4 bits


total: 6.2 bits

wide coverage dependency parser

Direct Object vs. Subject (late closure):

Double Object vs. Relative Clause:

Noun-phrase vs. Sentential Complement:

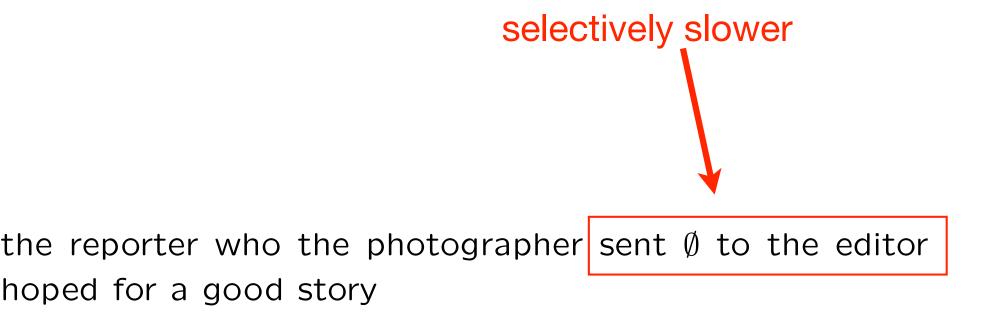
Compound Noun vs. Sentential Complement:

Hall & Hale AMLaP 07

GPSG-style fragment

0.20	NP	\rightarrow	SPECNP NBAR				
0.40	NP	\rightarrow	I	1.00	PP[to]	ζ.	תא ב≁]םאסם
0.40	NP	\rightarrow	John			\rightarrow	PBAR[to] NP
1.00	SPECNP	\rightarrow	DT	1.00	PBAR[to]	\rightarrow	P[to]
0.50	NBAR	\rightarrow	NBAR S[+R]	1.00	P[to]	\rightarrow	to
0.50	NBAR	\rightarrow	N	1.00	PP[for]	\rightarrow	PBAR[for] NP
1.00	S	\rightarrow	NP VP	1.00	PBAR[for]	\rightarrow	P[for]
0.87	S S[+R]		NP[+R] VP	1.00	P[for]	\rightarrow	for
		\rightarrow		1.00	NP[+R]	\rightarrow	who
0.13	S[+R]	\rightarrow	NP[+R] S/NP	0.50	DT	\rightarrow	the
1.00	S/NP	\rightarrow	NP VP/NP	0.50	DT	\rightarrow	а
0.50	VP/NP	\rightarrow	V[SUBCAT2] NP/NP	0.17	N	\rightarrow	editor
0.50	VP/NP	\rightarrow	V[SUBCAT3] NP/NP PP[to]	0.17	N	\rightarrow	senator
0.33	VP	\rightarrow	V[SUBCAT2] NP	0.17	N		
0.33	VP	\rightarrow	V[SUBCAT3] NP PP[to]			\rightarrow	reporter
0.33	VP	\rightarrow	V[SUBCAT4] PP[for]	0.17	N	\rightarrow	photographer
0.33	V [SUBCAT2]	\rightarrow	met	0.17	N	\rightarrow	story
0.33	V [SUBCAT2]	\rightarrow	attacked	0.17	Ν	\rightarrow	ADJ N
0.33	V [SUBCAT2]	\rightarrow	disliked	1.00	ADJ	\rightarrow	good
1.00	V [SUBCAT3]	\rightarrow	sent	1.00	NP/NP	\rightarrow	ϵ
1.00	V [SUBCAT4]	\rightarrow	hoped				

center embedding

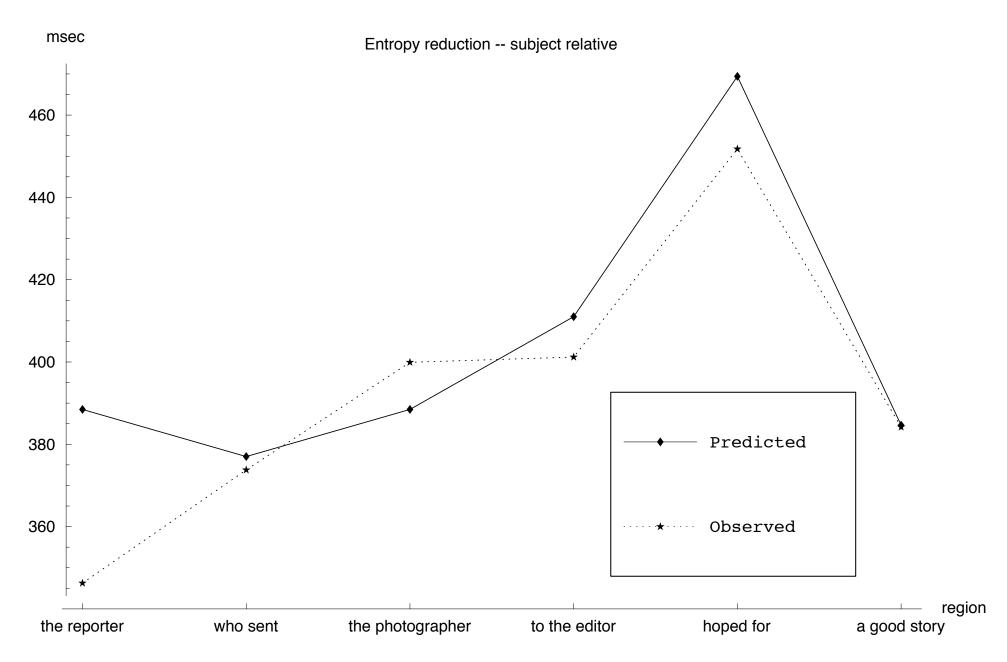

- 21 bits the reporter disliked the editor
- 39 bits the reporter [who the senator attacked] disliked the editor
- 48 bits the reporter [who the senator [who John met] attacked] disliked the editor

but yet

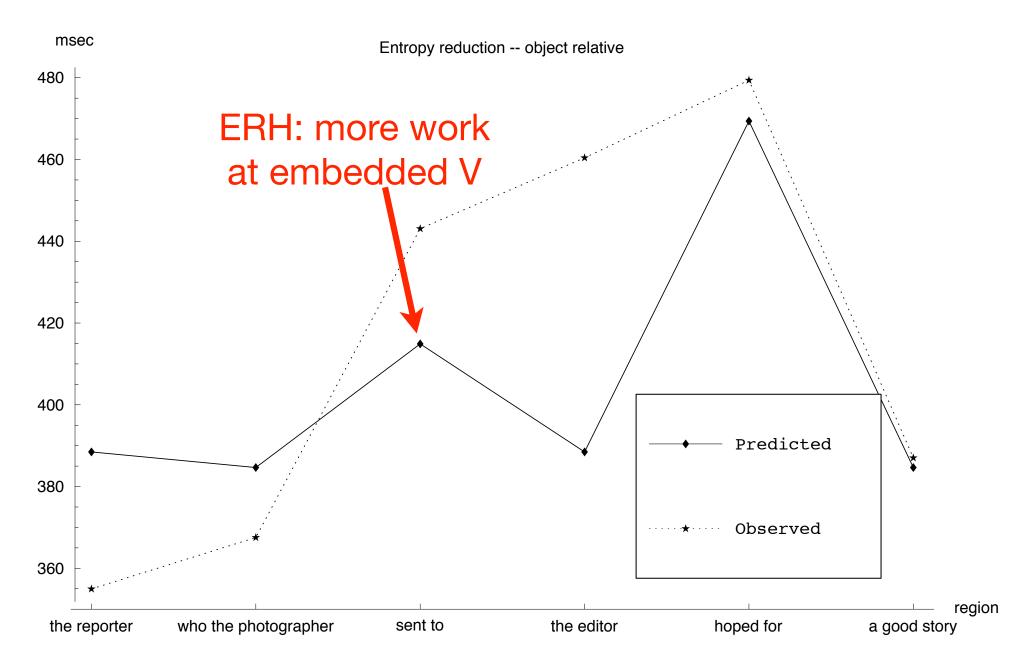
24 bits John met the senator [who attacked the reporter [who disliked the editor]]

subject vs object-extracted RC

the reporter who $\ensuremath{\emptyset}$ sent the photographer to the editor hoped for a good story



Grodner and Gibson CogSci 05 among others


bits ↔ reading time

$\mathsf{RT}(w_i) = \alpha (\downarrow H_i) + \beta$

subject-extracted

object-extracted

bits ↔ reading time

$\mathsf{RT}(w_i) = \alpha (\downarrow H_i) + \beta$

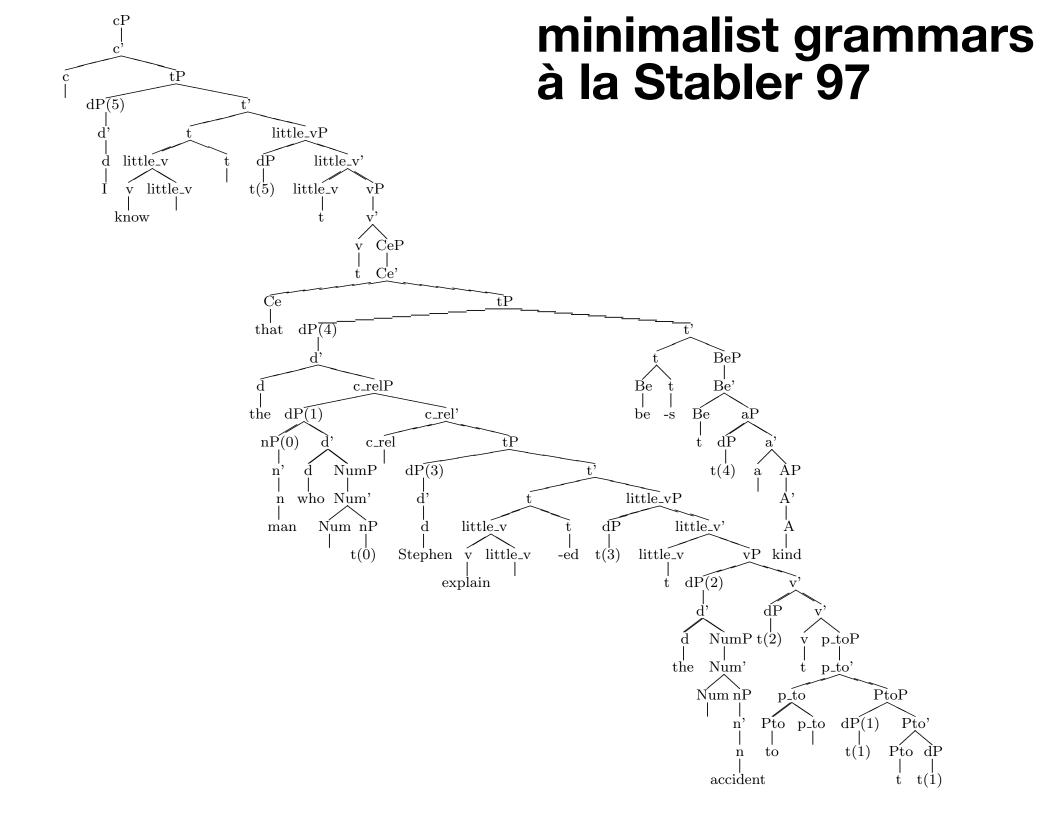
 $\alpha = 7.38$ $\beta = 377$ $r^2 = 0.49, p < 0.01$

Many types of RCs

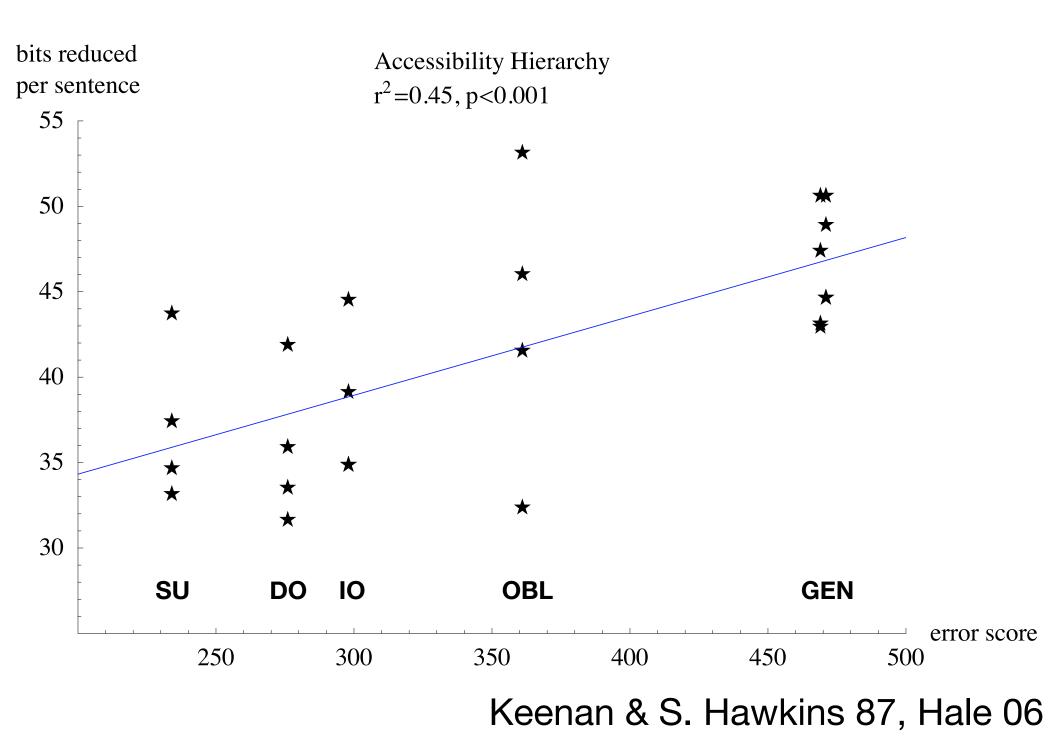
indirect object

the man who Stephen explained the accident to $\ensuremath{\emptyset}$ is kind

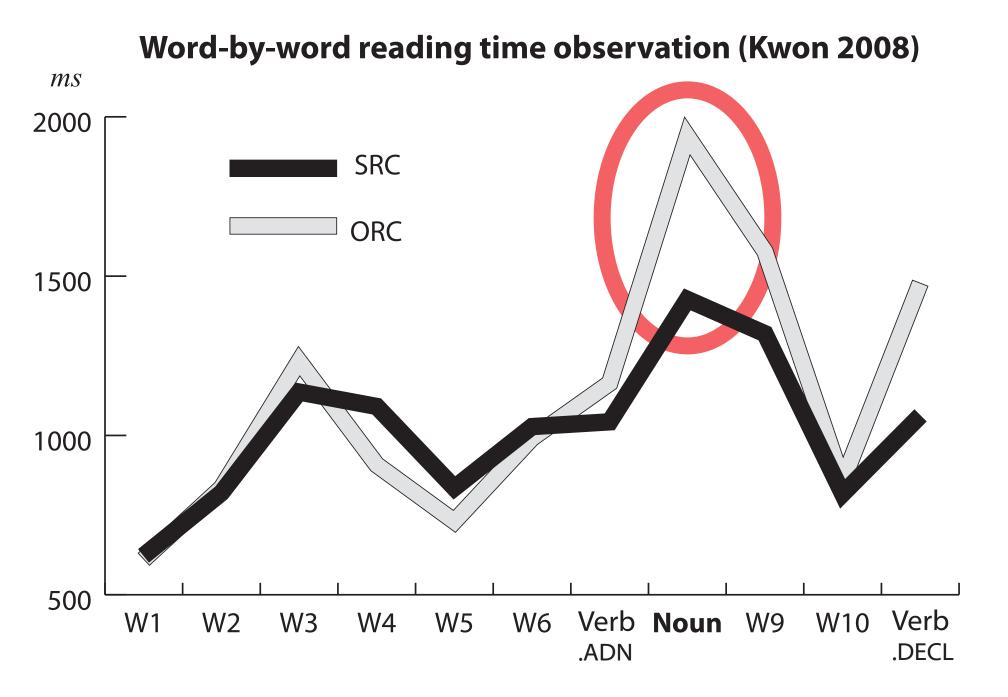
oblique


the girl who Sue wrote the story with \emptyset is proud

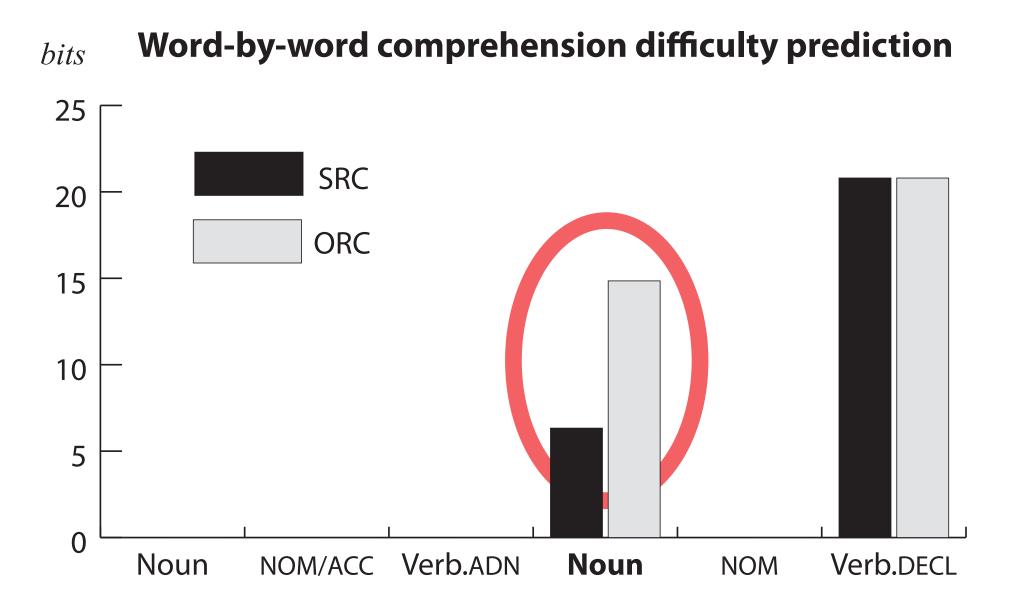
genitive subject

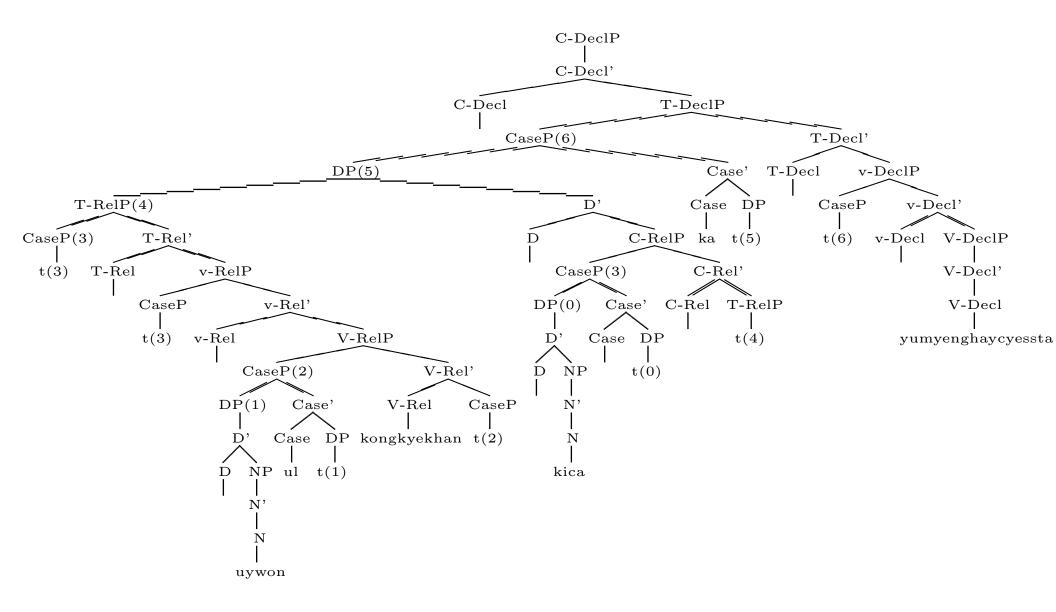

the boy whose brother \emptyset tells lies is always honest

genitive object


the sailor whose ship Jim took \emptyset had one leg

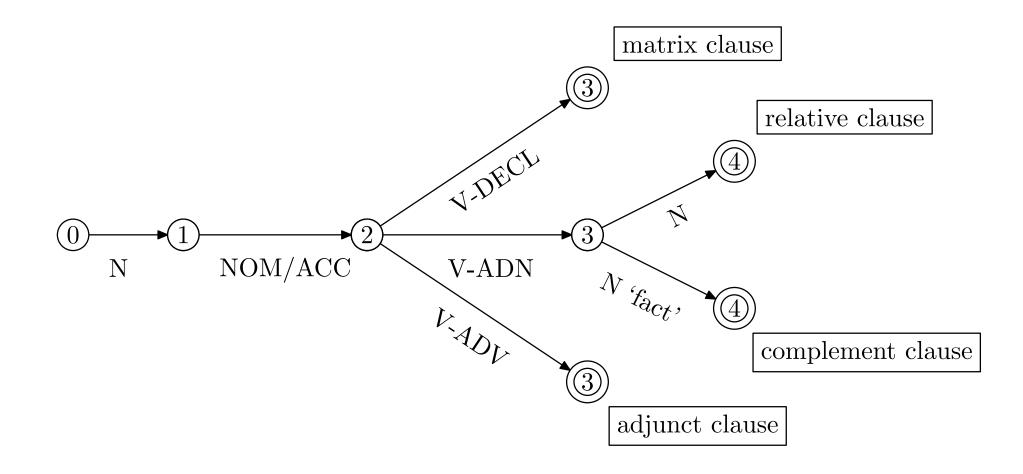
predicted work vs human accuracy


Korean Subj-RC advantage

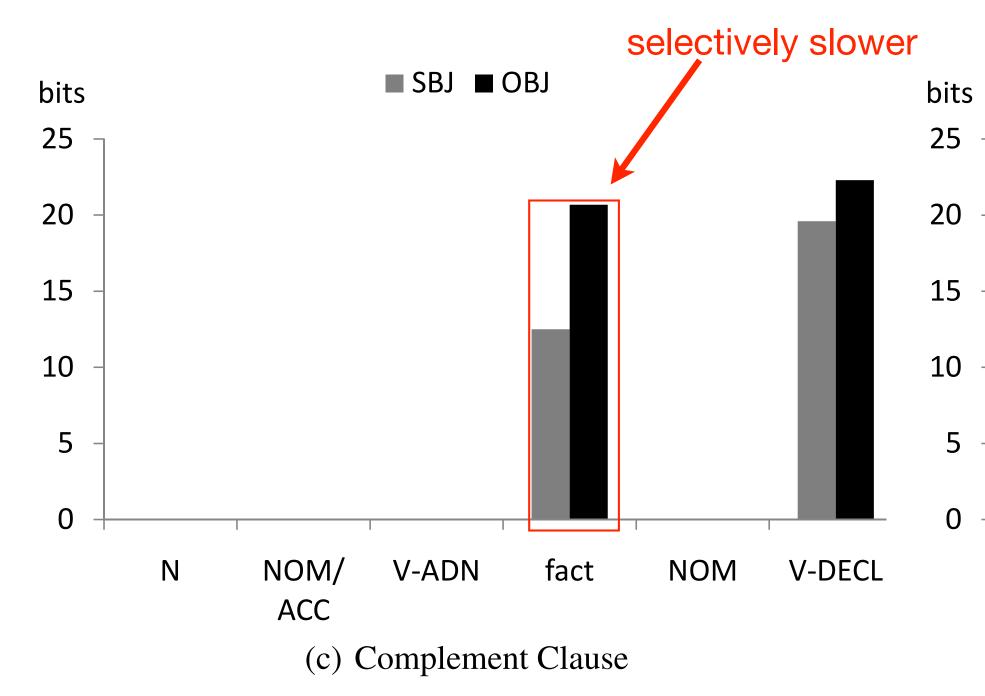

Dependency width doesn't derive it

SRC $\begin{bmatrix} RC & \emptyset & Object & Verb \end{bmatrix}$ HeadNoun **ORC** $\begin{bmatrix} RC & Subject & \emptyset & Verb \end{bmatrix}$ HeadNoun

ERH+MG does derive the SRC advantage

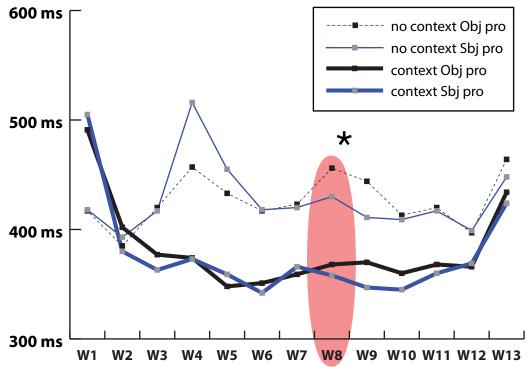


"The reporter who attacked the senator became famous"



Yun, Whitman & Hale 10

One of four clause types



N NOM/ Novel prediction ACC

V-DECL

Confirmed experimentally

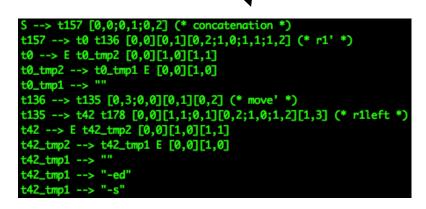
object-"extracted" slower, p < 0.007

NCCNPs with subject pro					
W1 W2 W3 W4 W5 W 지난달 <i>pro</i> 편집장을 뇌물 수수 혐 Last month he_i editor-ACC bribe taking su	혐의로 협박한 사실이	밝혀지자 총장은	즉각 💈	기자회견을 을	/13 불었다. eld
'The chancellor _i immediately held a press confe	erence as the fact that he _i threatened the	e editor for taking a bribe last mont	h was revealed	d.'	
NCCNPs with object pro					
W1 W2 W3 W4 W5 지난 달 편집장이 <i>pro</i> 뇌물 수수 Last month editor-NOM him _i bribe taking		W9W10밝혀지자 증장은 was.revealed-aschancellori-TOF	W11 즉각 immediately	W12 기자회견을 press.conference-ACC	W13 열었다. held
'The chancellor _i immediately held a press confe	erence as the fact that the editor threate	ned him _i for taking a bribe last mor	nth was reveale	ed.'	

Kwon, Yun et al CUNY2011

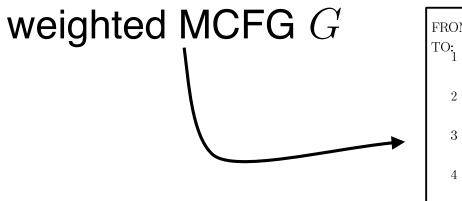
outline

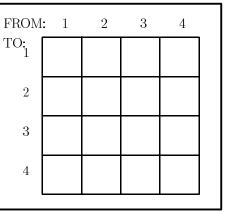
Entropy reduction studies relative clauses in English and Korean

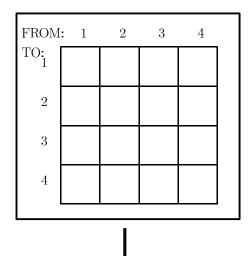

How does it work? computing $\downarrow H_i$

Why does it work? reflections on information theory & linguistics

computing H_i


=c +nom agrD	ε	=i +rel c	ϵ
=>agrD droot	the	d	Ι
=d =d i	met	=n d -rel	who
n -nom	boy		


Minimalist Grammar (or other formalism)


input string $w=w_1w_2w_3...w_i$ prefix of a sentence in L(G)

chart

computing H_i

chart's items form a graph

 $H(G') = H_i$

a system of equations,whose solutions are(sums of) probabilities

weighted "intersection" grammar G'

entropy of probabilistic grammar

- \vec{h} vector of 1-step rewriting entropies
- \vec{H} vector of infinite step rewriting entropies
- M "fertility matrix" giving expected number j symbols birthed by the ith symbol

$\vec{H} = \vec{h} + \mathbf{M}\vec{H}$

Grenander 67

entropy of probabilistic grammar

- \vec{h} vector of 1-step rewriting entropies
- \vec{H} vector of infinite step rewriting entropies
- M "fertility matrix" giving expected number j symbols birthed by the ith symbol

$\vec{H} = \vec{h} + \mathbf{M}\vec{H}$ $\vec{h} = \vec{H} - \mathbf{M}\vec{H} = (I - \mathbf{M})\vec{H}$

Grenander 67

entropy of probabilistic grammar

- \vec{h} vector of 1-step rewriting entropies
- \vec{H} vector of infinite step rewriting entropies
- M "fertility matrix" giving expected number j symbols birthed by the ith symbol
- **I** the identity matrix with ones down the diagonal

$\vec{H} = \vec{h} + \mathbf{M}\vec{H}$ $\vec{h} = \vec{H} - \mathbf{M}\vec{H} = (I - \mathbf{M})\vec{H}$ $\vec{H} = (I - \mathbf{M})^{-1}\vec{h}$

Grenander 67

outline

Entropy reduction studies relative clauses in English and Korean

How does it work? computing $\downarrow H_i$

Why does it work? reflections on information theory & linguistics

SCIENTIFIC AMERICAN

VOL. 181, NO. 1

JULY 1949

THE MATHEMATICS OF COMMUNICATION

An important new theory is based on the statistical character of language. In it the concept of entropy is closely linked with the concept of information

by Warren Weaver

Entropy reduction in 1953

(5) Non-linguistic considerations. We will assume that all of the 1152 sentences in this language are equiprobable, and that there are no dependencies *between* sentences in a string.

Application of entropy measurement

- (1) Entropy of a single sentence: $H_8 = \log_2 1152 = 10.17$.
- (2) Entropy reduction of each phoneme, considered with respect to its position in the sentence is: $H_P = H_S H_R$, where H_R is the entropy of the statements which are still possible after the transmission of phoneme P.

To illustrate: Consider the successive phonemes of the sentence abibibbabbi 'see boy man not' or 'does not the boy see the man?' (Free translation.)

	. No. F	Possible Sentences		
Phoneme	Remarks	Remaining	\mathbf{H}	$\mathbf{H}_{\mathbf{P}}$
	Any sentence possible before transmission begins	1152	10.17	
a	Must be question with trans. vb., of which the no.			
	of possibilities is	512	9.	1.17
b	Verb either see or kill	256	8.	1.0
a	Verb must be see	128	7.	1.0
b	N _s must be either man, woman, boy or girl	64	6.	1.0
i	Must be either boy or girl	32	5.	1.0
b	Must be <i>boy</i>	16	4.	1.0
b	No is man, woman, boy, or girl	8	3.	1.0
a	Man or woman	4	2 .	1.0
b	Man; sentence either pos. or neg.	2 ·	1.	1.0
b	Redundant; gives no information	$\overline{2}$	1.	0.0
i	Sentence is negative	1	0.0	1.0
				10.17

(3) Entropy reduction of each morpheme, also considered in relation to its position in the sentence, is $H_M = H_S - H_R$ where H_S and H_R are as defined previously. The same sentence is used here as in the example above.

"Psycholinguistics" Sebeok and Osgood, eds.

§5.3 Applications of Entropy Measures to Problems of Sequence Structure

Whatever Happened to Information Theory in Psychology?

R. Duncan Luce University of California, Irvine

"The elements of choice in information theory are absolutely neutral and lack any internal structure. That is fine for a communication engineer[but] by and large, however, the stimuli of psychological experiments are to some degree structured, and so, in a fundamental way, they are not in any sense interchangeable."

Formal grammar and information theory: together again?

By Fernando Pereira

"Probabilities can be assigned to complex linguistic events, even novel ones, by using the causal *structure of the underlying models* to propagate the uncertainty in the elementary decisions."

⇒ these models incorporate linguistic theories!

Conclusions

Information theory helps identify which RCs are hard where

the account uses substantial syntactic claims

the difference since 1953 is the grammar

bonus slides

Let G be a (probabilistic) grammar, X a random variable whose outcomes x are derivations on G, and Y a related variable whose outcomes y are initial substring of sentences in L(G).

```
mutual information of grammar and prefix string
```

$$I(X;Y) = H(X) - H(X|Y)$$

information conveyed by a particular prefix

$$I(X;y) = H(X) - H(X|y)$$

Let G be a (probabilistic) grammar, X a random variable whose outcomes x are derivations on G, and Y a related variable whose outcomes y are initial substring of sentences in L(G).

```
mutual information of grammar and prefix string
```

$$I(X;Y) = H(X) - H(X|Y)$$

= $H(X) - \mathbb{E}[H(X|y)]$

information conveyed by a particular prefix

$$I(X;y) = H(X) - H(X|y)$$

Let G be a (probabilistic) grammar, X a random variable whose outcomes x are derivations on G, and Y a related variable whose outcomes y are initial substring of sentences in L(G).

$$I(X; y_{\text{new}}) - I(X; y_{\text{old}})$$

Let G be a (probabilistic) grammar, X a random variable whose outcomes x are derivations on G, and Y a related variable whose outcomes y are initial substring of sentences in L(G).

$$I(X; y_{\text{new}}) - I(X; y_{\text{old}})$$

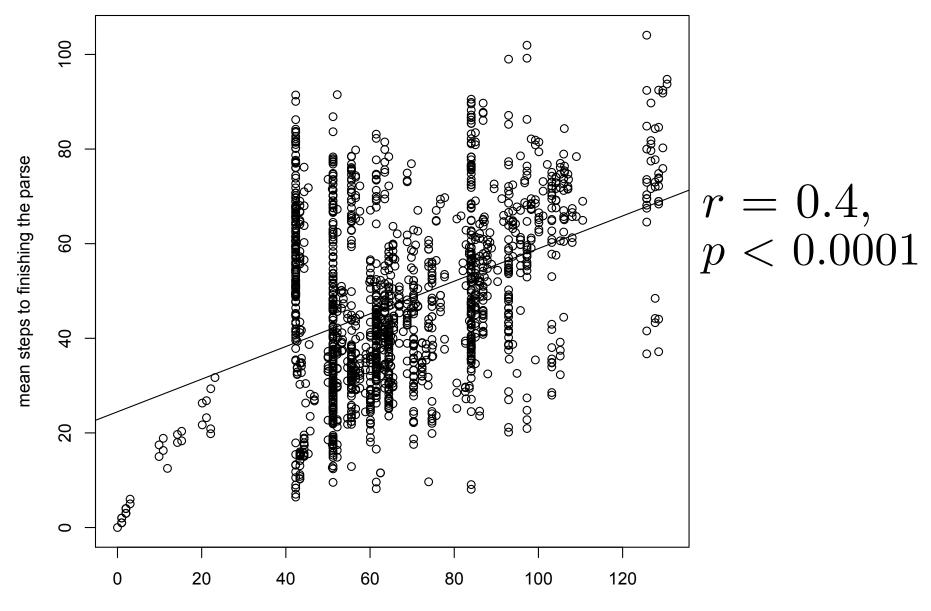
= $\left(H(X) - H(X|y_{\text{new}})\right) - \left(H(X) - H(X|y_{\text{old}})\right)$

Let G be a (probabilistic) grammar, X a random variable whose outcomes x are derivations on G, and Y a related variable whose outcomes y are initial substring of sentences in L(G).

$$\begin{split} I(X; y_{\text{new}}) &- I(X; y_{\text{old}}) \\ &= \left(H(X) - H(X|y_{\text{new}}) \right) - \left(H(X) - H(X|y_{\text{old}}) \right) \\ &= H(X|y_{\text{old}}) - H(X|y_{\text{new}}) \end{split}$$

Let G be a (probabilistic) grammar, X a random variable whose outcomes x are derivations on G, and Y a related variable whose outcomes y are initial substring of sentences in L(G).

$$I(X; y_{\text{new}}) - I(X; y_{\text{old}})$$


$$= \left(H(X) - H(X|y_{\text{new}})\right) - \left(H(X) - H(X|y_{\text{old}})\right)$$

$$= H(X|y_{\text{old}}) - H(X|y_{\text{new}})$$

$$= \downarrow H_i \quad \text{where } y_{\text{old}} = w_1 \cdots w_{i-1},$$

$$y_{\text{new}} = w_1 \cdots w_i$$

the best heuristic tracks uncertainty about the rest of the sentence

Hale 2011

sum of expected derivation lengths for predicted categories