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sentence comprehension

easy hard

‣reading times
‣error scores
‣eye fixations
‣scalp potentials



Q. when is comprehension 
more (vs less) difficult?

A. where more (vs less) information 
is conveyed

leading idea



choice of continuation
informs the hearer

the boy eats shy...
the boy eats using...
the boy eats like...

the boy eats... the boy eats the...
the boy eats his...
the boy eats at...
the boy eats of...
the boy eats went...



conditional entropy

probability (lets pretend)
the boy eats shy people for breakfast 1.0× 10−25

the boy eats using chopsticks on Tuesday 1.0× 10−7

the boy eats like a hippopotamous 1.0× 10−6

the boy eats the dog with a spoon 0.0001
the boy eats his sister’s bicycle 0.0005
the boy eats at Denny’s frequently 0.00001
the boy eats of the forbidden fruit 1.0× 10−66

the boy eats went for a walk 0.0

avg uncertainty of this distribution



H(Derivation|Prefix= “the boy eats”) 

fluctuation

H(Derivation|Prefix= “the boy eats his”) 

any downward change quantifies 
information gained from “his”



entropy reduction hypothesis

observed processing 
effort reflects 
decreases in Hi

where Hi abbreviates H(Derivation|Prefix = w0···i)



outline

Entropy reduction studies
relative clauses in English and Korean

How does it work? 
computing ↓Hi

Why does it work? 
reflections on information theory & 
linguistics



garden path sentences

Bever 70

the horse raced past the barn fell



1.00 S → NP VP
0.88 NP → DT NN
0.12 NP → NP RRC
1.00 PP → IN NP
1.00 RRC → Vppart PP
0.50 VP → Vpast
0.50 VP → Vppart PP
1.00 DT → the
0.50 NN → horse
0.50 NN → barn
0.50 Vppart → groomed
0.50 Vppart → raced
0.50 Vpast → raced
0.50 Vpast → fell
1.00 IN → past

naive probabilistic grammar

Hale JPR 03
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entropy: 3.65 bits
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the horse raced
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last word gives 4 bits

the horse raced past the barn fell

1

2

3

4

bits
reduced Garden-pathing

total: 6.2 bits



wide coverage dependency parser

Hall & Hale AMLaP 07



0.20 NP → SPECNP NBAR
0.40 NP → I
0.40 NP → John
1.00 SPECNP → DT
0.50 NBAR → NBAR S[+R]
0.50 NBAR → N
1.00 S → NP VP
0.87 S[+R] → NP[+R] VP
0.13 S[+R] → NP[+R] S/NP
1.00 S/NP → NP VP/NP
0.50 VP/NP → V[SUBCAT2] NP/NP
0.50 VP/NP → V[SUBCAT3] NP/NP PP[to]
0.33 VP → V[SUBCAT2] NP
0.33 VP → V[SUBCAT3] NP PP[to]
0.33 VP → V[SUBCAT4] PP[for]
0.33 V[SUBCAT2] → met
0.33 V[SUBCAT2] → attacked
0.33 V[SUBCAT2] → disliked
1.00 V[SUBCAT3] → sent
1.00 V[SUBCAT4] → hoped

1.00 PP[to] → PBAR[to] NP
1.00 PBAR[to] → P[to]
1.00 P[to] → to
1.00 PP[for] → PBAR[for] NP
1.00 PBAR[for] → P[for]
1.00 P[for] → for
1.00 NP[+R] → who
0.50 DT → the
0.50 DT → a
0.17 N → editor
0.17 N → senator
0.17 N → reporter
0.17 N → photographer
0.17 N → story
0.17 N → ADJ N
1.00 ADJ → good
1.00 NP/NP → �

GPSG-style fragment



center embedding

21 bits the reporter disliked the editor
39 bits the reporter [ who the senator attacked ] disliked the editor
48 bits the reporter [ who the senator [ who John met ] attacked ]

disliked the editor

but yet

24 bits John met the senator [ who attacked the reporter
[ who disliked the editor ] ]



subject vs object-extracted RC

the reporter who ∅ sent the photographer to the editor
hoped for a good story

the reporter who the photographer sent ∅ to the editor
hoped for a good story

selectively slower

Grodner and Gibson CogSci 05
among others



bits ↔ reading time

RT(wi) = α (↓ Hi) + β



the reporter who sent the photographer to the editor hoped for a good story
region
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the reporter who the photographer sent to the editor hoped for a good story
region
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ERH: more work
at embedded V

object-extracted



bits ↔ reading time

RT(wi) = α (↓ Hi) + β

α = 7.38
β = 377
r2 = 0.49, p < 0.01



Many types of RCs

indirect object

the man who Stephen explained the accident to ∅ is kind

oblique

the girl who Sue wrote the story with ∅ is proud

genitive subject

the boy whose brother ∅ tells lies is always honest

genitive object

the sailor whose ship Jim took ∅ had one leg
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predicted work vs human accuracy
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r2!0.45, p"0.001
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Keenan & S. Hawkins 87, Hale 06



Korean Subj-RC advantage
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Word-by-word reading time observation (Kwon 2008)
ms

Verb
.ADN

Verb
.DECL



Dependency width doesn’t derive it

SRC
[
RC ∅ Object Verb

]
HeadNoun

ORC
[
RC Subject ∅ Verb

]
HeadNoun



ERH+MG does derive the SRC advantage
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One of four clause types
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Figure 6: Word-by-word comprehension difficulty predictions derived by the INFORMATION-THEORETICAL Entropy Reduc-
tion Hypothesis. Horizontal axes labels name word classes. SBJ abbreviates “subject-extracted”, OBJ “object-extracted”.
Clause-types (a)–(d) are as in Figure 3.
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Novel prediction
selectively slower



Confirmed experimentally

Kwon, Yun et al CUNY2011

NCCNPs with subject pro

NCCNPs with object pro

W1   W2  
  

W3   W4   W5   W6   W7   W8   W9   W10   W11   W12   W13  

      pro                                 .  

Last   month   hei   editor-‐ACC   bribe   taking   suspicion-‐with   threaten-‐ADN   fact-‐NOM   was.revealed-‐as   chancellori-‐TOP   immediately   press.conference-‐ACC   held  
  

‘The  chancellori  immediately  held  a  press  conference  as  the  fact  that  hei  threatened  the  editor  for  taking  a  bribe  last  month  was  revealed.’  

 

W1   W2   W3      W4   W5   W6   W7   W8   W9   W10   W11   W12   W13  

         pro                              .  

Last   month   editor-‐NOM   himi   bribe   taking   suspicion-‐with   threaten-‐ADN   fact-‐NOM   was.revealed-‐as   chancellori-‐TOP   immediately   press.conference-‐ACC   held  
  

‘The  chancellori  immediately  held  a  press  conference  as  the  fact  that  the  editor  threatened  himi  for  taking  a  bribe  last  month  was  revealed.’  

 

300 ms

400 ms

500 ms

600 ms
no context Obj pro
no context Sbj pro
context Obj pro
context Sbj pro

W13W12W11W10W9W8W7W6W5W4W3W2W1

*

object-“extracted”
slower, p < 0.007



outline

Entropy reduction studies
relative clauses in English and Korean

How does it work? 
computing ↓Hi

Why does it work? 
reflections on information theory & 
linguistics



computing Hi

=c +nom agrD � =i +rel c �
=>agrD droot the d I
=d =d i met =n d -rel who
n -nom boy

weighted MCFG G

Minimalist Grammar (or other formalism)

chart

input string w=w1w2w3...wi

prefix of a sentence in L(G)



computing Hi

chart’s items
form a graph

= a system of equations,
whose solutions are
(sums of) probabilities

weighted 
"intersection" 
grammar G´

H(G′) = Hi



�H = �h + M �H

�h = �H −M �H = (I −M) �H

�H = (I −M)−1�h

�h vector of 1-step rewriting entropies
�H vector of infinite step rewriting entropies
M “fertility matrix” giving expected number j symbols birthed by the i

th symbol
I the identity matrix with ones down the diagonal

entropy of probabilistic grammar

Grenander 67
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Entropy reduction in 1953

“Psycholinguistics” Sebeok and Osgood, eds.
§5.3 Applications of Entropy Measures to Problems of Sequence Structure



Whatever Happened to Information Theory in Psychology?

R. Duncan Luce
University of California, Irvine

Although Shannon’s information theory is alive and well in a number of fields, after an
initial fad in psychology during the 1950s and 1960s it no longer is much of a factor,
beyond the word bit, in psychological theory. The author discusses what seems to him
(and others) to be the root causes of an actual incompatibility between information
theory and the psychological phenomena to which it has been applied.

Claude Shannon, the creator of information
theory, or communication theory as he preferred
to call it, died on February 24, 2001, at age 84.
So, I would like to dedicate this brief piece to
his memory and in particular to recall his sem-
inal contribution “A Mathematical Theory of
Communication,” which was published in two
parts in the Bell System Technical Journal in
1948 and rendered more accessible in the short
monograph by Shannon and Weaver (1949).
Let me begin by saying that information the-

ory is alive and well in biology, engineering,
physics, and statistics, although my conclusion
is that for quite good reasons it has had little
long-range impact in psychology. One rarely
sees Shannon’s information theory in contem-
porary psychology articles except to the extent
of the late John W. Tukey’s term bit, which is
now a permanent word of our vocabulary. If we
look at the table of contents of J. Skilling’s
(1989) Maximum Entropy and Bayesian Meth-
ods, we find the pattern of chapters on applica-
tions shown in Table 1. You will note none are
in psychology.
Because it is doubtful that many young psy-

chologists are learning the subject, a few words
are necessary to set the stage. As mathematical
expositor extraordinaire Keith Devlin (2001, p.
21) stated: “Shannon’s theory does not deal

with ‘information’ as that word is generally
understood. Instead, it deals with data—the raw
material out of which information is obtained.”
Now, that makes it sound akin to what we
normally think to be the role of statistics, which
is correct. It begins with an abstract, finite set of
elements and a probability distribution over it.
Let the elements of the set be identified with the
first m integers and let p(i), where i ! 1, . . . , m,
be the probabilities that are assumed to cover all
possibilities, that is, ¥i!1

m p(i) ! 1. Uncertainty
is a summary number that is a function of the
probabilities; that is, U({p(i)}) ! U(p(1), . . . ,
p(m)). What function?

Shannon’s Measure of Information

To get at that, Shannon imposed a number of
plausible properties that he believed such a
number should satisfy. Others subsequently
proposed alternatives, among them Aczél and
Daróczy (1975); Aczél, Forte, and Ng (1974);
and Luce (1960). Probably the best alternative
was that offered by Aczél et al. (1974), which,
with less than total precision, was as follows:
1. The labeling of the elements is totally

immaterial; all that counts is the set of m
probabilities.
2. For m ! 2, U(12,

1
2) ! 1. This defines the

unit of uncertainty, the bit.
3. limpn0U(p, 1 " p) ! 0.
4. U( p1, . . . , pm, 0) ! U(p1, . . . , pm).
5. If P and Q are two distributions and P ! Q

denotes their joint distribution, U(P ! Q) !
U(P) # U(Q), with ! holding if P and Q are
independent.
The mathematical conclusion is that

This article was prepared at the instigation of Alan Bo-
neau as a contribution to a Division 1 session at the 2001
Annual Meeting of the American Psychological Association
in San Francisco. I have benefited from interchanges on the
topic with Peter Killeen and Donald Laming.
Correspondence concerning this article should be ad-

dressed to R. Duncan Luce, School of Social Sciences,
Social Science Plaza 2133, University of California, Irvine,
California 92697-5100. E-mail: rdluce@uci.edu

Review of General Psychology Copyright 2003 by the Educational Publishing Foundation
2003, Vol. 7, No. 2, 183–188 1089-2680/03/$12.00 DOI: 10.1037/1089-2680.7.2.183

183

“The elements of choice in information theory are absolutely 
neutral and lack any internal structure.
That is fine for a communication engineer ....[but]
by and large, however, the stimuli of psychological experiments 
are to some degree structured, and so, in a fundamental way, 
they are not in any sense interchangeable.”



Formal grammar and information theory:
together again?

By Fernando Pereira

AT & T Laboratories Research, A247, Shannon Laboratory, 180 Park Avenue,
Florham Park, NJ 07932-0971, USA (pereira@research.att.com)

In the last 40 years, research on models of spoken and written language has been split

between two seemingly irreconcilable traditions: formal linguistics in the Chomsky

tradition, and information theory in the Shannon tradition. Zellig Harris had advo-

cated a close alliance between grammatical and information-theoretic principles in

the analysis of natural language, and early formal-language theory provided another

strong link between information theory and linguistics. Nevertheless, in most research

on language and computation, grammatical and information-theoretic approaches

had moved far apart.

Today, after many years on the defensive, the information-theoretic approach has

gained new strength and achieved practical successes in speech recognition, informa-

tion retrieval, and, increasingly, in language analysis and machine translation. The

exponential increase in the speed and storage capacity of computers is the proxi-

mate cause of these engineering successes, allowing the automatic estimation of the

parameters of probabilistic models of language by counting occurrences of linguistic

events in very large bodies of text and speech. However, I will argue that information-

theoretic and computational ideas are also playing an increasing role in the scien-

ti�c understanding of language, and will help bring together formal-linguistic and

information-theoretic perspectives.

Keywords: formal linguistics; information theory; machine learning

1. The great divide

In the last 40 years, research on models of spoken and written language has been

split between two seemingly irreconcilable points of view: formal linguistics in the

Chomsky tradition, and information theory in the Shannon tradition. The famous

quote of Chomsky (1957) signals the beginning of the split.

(1) Colourless green ideas sleep furiously.

(2) Furiously sleep ideas green colourless.

: : : It is fair to assume that neither sentence (1) nor (2) (nor indeed any

part of these sentences) has ever occurred in an English discourse. Hence,

in any statistical model for grammaticalness, these sentences will be ruled

out on identical grounds as equally `remote’ from English. Yet (1), though

nonsensical, is grammatical, while (2) is not.

Phil. Trans. R. Soc. Lond. A (2000) 358, 1239{1253

1239

c 2000 The Royal Society

 on July 14, 2011rsta.royalsocietypublishing.orgDownloaded from 

“Probabilities can be assigned to complex linguistic events, even 
novel ones, by using the causal structure of the underlying 
models to propagate the uncertainty in the elementary 
decisions.”

⇒ these models incorporate
linguistic theories!

April, 2000



Conclusions

Information theory helps identify
which RCs are hard where

the account uses substantial syntactic claims

the difference since 1953 is the grammar
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definitions
Let G be a (probabilistic) grammar, X a random variable whose outcomes x are derivations on G,
and Y a related variable whose outcomes y are initial substring of sentences in L(G).

I(X;Y ) = H(X)−H(X|Y )
= H(X)− E [H(X|y)]

mutual information
of grammar and prefix string

information conveyed
by a particular prefix

I(X; y) = H(X)−H(X|y)
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the best heuristic tracks
uncertainty about the rest of the sentence
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