Cross-linguistic variation in temporal adjunct clauses

Yusuke Kubota, Jungmee Lee, Anastasia Smirnova and Judith Tonhauser
The Ohio State University

1. Introduction

A particular meaning can be realized by morphosyntactically distinct expressions across languages. One of the challenges for cross-linguistic research is to account for convergence in meaning in light of morphosyntactic variation. This paper examines cross-linguistic variation in the distribution and interpretation of tense in temporal adjunct clauses (TACs, e.g. English *John crossed the street before/after he fell*) in English, Japanese and Russian. The cross-linguistic variation exhibited by these three languages with respect to TACs has received analyses that rely on syntax to varying degrees (Ogihara 1994, Ogihara 1996, Arregui and Kusumoto 1998). After introducing the pattern in section 2, we develop a semantic analysis in section 3 that accounts for the variation solely on the basis of the meanings of the tenses and the temporal connectives realized in these constructions. A comparison of our analysis to the previous ones in section 4 identifies both empirical and theoretical advantages. Section 5 concludes the paper.

2. Tenses in temporal adjunct clauses

Before examining the distribution and interpretation of tenses in TACs, we illustrate the past and non-past tenses of English in (1), Japanese in (2) and Russian in (3): the a.-examples feature the past tenses (glossed PAST in the Japanese and Russian examples), the b.-examples the non-past tenses (glossed NPST).2

(1) a. Ken was at home yesterday/#now/#tomorrow.
 b. Ken is at home #yesterday/now/tomorrow.

1 For constructive feedback, we thank the participants of the syntax/semantics discussion group at the Ohio State University and our audience at the 8th Chronos conference, as well as two anonymous Chronos reviewers.

2 Glosses used in the paper are FEM = feminine gender, GEN = genitive case, IMPF = imperfective aspect, INSTR = instrumental case, NOM = nominative case, NPST = non-past tense, PAST = past tense, PERF = perfective aspect, TOP = topic.

© Cahiers Chronos
Yusuke Kubota, Jungmee Lee, Anastasia Smirnova, and Judith Tonhauser

(2) a. Ken-wa kinoo/#ima/#asita ie-ni i-ta.
 Ken-TOP yesterday/now/tomorrow home-at be-PAST
 ‘Ken was at home yesterday/#now/#tomorrow.’

 b. Ken-wa #kinoo/ima/asita ie-ni i-ru.
 Ken-TOP yesterday/now/tomorrow home-at be-NPST
 ‘Ken is/will be at home #yesterday/now/tomorrow.’

(3) a. Ken pe-l včera/#sejčas/#zavtra.
 Ken sing.IMPF-PAST yesterday/now/tomorrow
 ‘Ken sang yesterday/#now/#tomorrow.’

 b. Ken poj-ot #včera/sejčas/zavtra.
 Ken sing.IMPF-NPST yesterday/now/tomorrow
 ‘Ken is singing #yesterday/now/tomorrow.’

In matrix clauses, the past tense of each language locates the eventuality denoted by the verb in the past of the speech time, as illustrated by the compatibility with the past time denoting adverb yesterday (and its Japanese and Russian equivalents). We refer to the tense morphemes in the b.-examples as ‘non-past’ tenses since these tenses are principally compatible with both present and future time reference in all three languages. There is, however, variation in which kinds of non-past sentences in the three languages are compatible with present or future temporal reference (cf. e.g. Copley 2002; Kaufmann 2005).

As observed by Ogihara (1996), among others, the tense form acceptable in Japanese TACs is determined by the temporal connective rather than the temporal location of the eventuality denoted by the embedded clause with respect to the speech time. In TACs with the temporal connective mae ‘before’, only the non-past tense is acceptable, whereas with ato ‘after’, only the past tense is acceptable. This is illustrated in (4) and (5), respectively (with the TAC in square brackets); in the a.-examples, the matrix clause is in the past tense, in the b.-examples, it is in the non-past tense.

 Ken-NOM arrive-PAST/arrive-NPST before-at Anna-NOM leave-PAST
 ‘Anna left before Ken arrived.’

 Ken-NOM arrive-PAST/arrive-NPST before-at Anna-NOM leave-NPST
 ‘Anna will leave before Ken arrives.’

 Ken-NOM arrive-PAST/arrive-NPST after-at Anna-NOM leave-PAST
 ‘Anna left after Ken arrived.’
Cross-linguistic variation in temporal adjunct clauses

 Ken-NOM arrive-PAST/arrive-NPST after-at Anna-NOM leave-NPST
 ‘Anna will leave after Ken arrives.’

The distribution of the Japanese past and non-past tenses in these two constructions reveals that the tense of the TAC is interpreted with respect to the matrix clause event time rather than the speech time. (We use the term ‘event time’ to refer to the time at which the eventuality denoted by a clause is temporally located.) Compare, for example, (4a) and (5a): in both examples, the eventuality denoted by the TAC is temporally located prior to the speech time, yet the TAC in (4a) must have the non-past tense, while that of (5a) must have the past tense. The crucial difference between the two examples is that in (4a) the temporal connective *mae* ‘before’ locates the eventuality denoted by the TAC after the time of the eventuality denoted by the matrix clause (hence the non-past tense TAC) while *ato* ‘after’ in (5a) locates the eventuality denoted by the TAC prior to that of the matrix clause (hence the past tense TAC).

Traditionally, a tense that is interpreted with respect to the speech time is called an *absolute* tense (Comrie 1985). This is in contrast to a *relative* tense, which is interpreted with respect to a contextually given time, such as the matrix clause event time (e.g. Ogihara 1994). The distribution of Japanese tenses in the above TACs suggests that they are relative tenses, according to this terminology. We return to this classification in section 4.1.

Considering the data in (6) to (9), we see that tenses in English and Russian TACs are not interpreted relative to the matrix clause event time: English and Russian *before*-clauses, for example, realize the past tense if the matrix clause is in the past tense, but the non-past tense if the matrix clause has non-past temporal reference (cf. (6a,b) and (8a,b)).

(6)
 a. Anna left [before Ken arrived/#arrives].
 b. Anna will leave [before Ken #arrived/arrives].

(7)
 a. Anna left [after Ken arrived/#arrived].
 b. Anna will leave [after Ken #arrived/arrives].

(8)
 a. Anna u-exa-l-a [pered tem, kak Ken
 Anna PERF-leave-PAST-FEM before that.INSTR as Ken
 pri-exa-l/#pri-ede-t].
 perf-arrive-PAST/PERF-arrive-NPST
 ‘Anna left before Ken arrived.’
b. Anna u-ede-t [pered tem, kak Ken
Anna PERF-leave-NPST before that.INSTR as Ken
#pri-exa-[pri-ede-t].
PERF-arrive-PAST/PERF arrive-NPST
‘Anna will leave before Ken arrives.’

\((9)\) a. Anna u-exa-l-a [posle togo, kak Ken
Anna PERF-leave-PAST-FEM after that.GEN as Ken
pri-exa-l/[pri-ede-t].
PERF-arrive-PAST/PERF-arrive-NPST
‘Anna left after Ken arrived.’

\(b\). Anna u-ede-t [posle togo, kak Ken
Anna PERF-leave-NPST after that.GEN as Ken
#pri-exa-l/[pri-ede-t].
PERF-arrive-PAST/PERF-arrive-NPST
‘Anna will leave after Ken arrives.’

Data like these indicate that the tenses embedded in English and Russian TACs are interpreted with respect to the speech time, i.e. that they are absolute tenses according to Comrie (1985). Compare, for example, \((8a)\) and \((9a)\): the eventuality denoted by the TAC in each of these examples is temporally located prior to the speech time, and both TACs are realized with the past tense, regardless of the location of the eventuality denoted by the TAC with respect to that denoted by the matrix clause.

3. A formal semantic analysis of the variation

TACs differ from other embedding constructions in that the construction itself contributes information about the relative temporal order between the eventualities denoted by the matrix and the embedded clauses. (Compare them e.g. with propositional attitude complements and relative clauses.) Ogihara (1994, 1996) shows that a compositional analysis of Japanese TACs is available that accounts for the distribution and interpretation of tenses on the basis of the meanings of the temporal connectives and the tenses. We argue that a semantic analysis of the cross-linguistic variation is desirable, and show in section 3.2 that Ogihara’s semantic analysis of Japanese TACs can be extended to account for English and Russian ones.

3.1. Basic assumptions about temporal interpretation

Our analysis is couched in a system in which natural language expressions are translated into a logical translation language (cf. Montague’s (1973)
Intensional Logic) and these translations receive model-theoretic interpretations. We follow Dowty (1979), Stump (1985) and Yoon (1996) in assuming that the interpretation of a simple sentence like (10) is obtained by applying the meaning of (here, past) tense to that of the untensed sentence *Ken arrive* (which we call ‘sentence radical’).

(10) Ken arrived.

A sentence radical denotes a set of times at which the eventuality described by the sentence holds. A sentence radical is of type $\langle i, \tau \rangle$, where i is the type of times, and τ is the type of truth values. The translation of the sentence radical of (10) is as follows ($' \Rightarrow ' $ stands for ‘translates as’):

(11) $\text{Ken arrive} \Rightarrow \lambda t \ [\text{AT}(t, \text{arrive}(k))]

The translation of the sentence radical is interpreted as the set of times t such that Ken arrives at t. As defined in (12), the first argument of the AT predicate specifies the evaluation time for the second argument of the predicate:

(12) $[[\text{AT}(\varsigma, P)]]^{M,i,g} = 1$ iff $[[P]]^{M,i',g} = 1$ where $i' = [[\varsigma]]^{M,i,g}$

The AT predicate shifts the evaluation time of its second argument P: rather than being interpreted at the temporal parameter i at which the AT predicate is interpreted, P is interpreted relative to the denotation of the first argument ς. Tenses are temporal modifiers of type $\langle \langle i, \tau \rangle, \langle i, \tau \rangle \rangle$. They introduce restrictions on the location of the times at which the eventuality holds. For example, the past tense constrains the set of times at which the eventuality is located in the past with respect to the local evaluation time; this is the speech time for matrix clauses and a time introduced by the embedding construction for embedded clauses (details are given below):

(13) $\text{PAST} \Rightarrow \lambda P_o. \lambda t (P(t) \& \text{PAST}(t))$

The translation says that times at which the eventuality holds are times of which the predicate PAST holds. As defined in (14), these times are past with respect to the temporal parameter i, the local evaluation time of PAST:

3 Since the formal system of this paper does not deal with issues involving aspect or discourse, we simply treat sentence radicals as denoting sets of times and tenses as relating the speech time and the event time. In a fuller analysis, in which aspect is taken into account, it might be necessary to model the meanings of sentence radicals as sets of temporal intervals and to define the meaning of tenses using Reichenbach’s (1947) notion of a reference time, whose location is contextually constrained.
PAST(\(\varsigma\)) is true just in case the time that the expression \(\varsigma\) denotes is prior to the temporal parameter \(i\).

The translation of the tensed sentence (10) is derived by applying the translation of the past tense (13) to that of the sentence radical (11):

\[
(15) \text{PAST (Ken arrive)} = \lambda P \lambda t[Q(t) \& \text{PAST}(t)](\lambda t[\text{AT}(t, \text{arrive}')(k)])
\]

Tensed sentences are again temporal abstracts (i.e. sets of times). We assume that existential closure applies when sentences are interpreted in discourse.

Applying existential closure to (15), we obtain (16):

\[
(16) \exists t[\text{AT}(t, \text{arrive}')(k) \& \text{PAST}(t)]
\]

We interpret (16) relative to a model \(M\), the speech time \(s^*\) and an assignment function \(g\):

\[
(17) [[\exists t[\text{AT}(t, \text{arrive}')(k) \& \text{PAST}(t)]]]^{M,s^*,g} = 1 \text{ iff there is some time } t \text{ which is prior to the speech time } s^* \text{ and Ken arrives at } t.
\]

Since the local evaluation time for matrix clause tenses is the speech time, the past tense here locates the event time prior to the speech time. In TACs, the local evaluation time of an embedded tense can but need not be the speech time, as we now show.

3.2. Tense interpretation in temporal adjunct clauses

Recall from section 2 that only the non-past tense occurs in Japanese mae ‘before’ TACs while only the past tense occurs in ato ‘after’ clauses. Ogihara (1994, 1996) derives this from the meanings of tenses and temporal connectives; here, we illustrate how his analysis of mae ‘before’ clauses can be formulated in our system. Consider (18):

\[
(18) [\text{Ken-ga ku-ru mae-ni}] \text{ Anna-ga kaet-ta.} \quad \text{Ken-NOM arrive-NPST before-at Anna-NOM leave-PAST}
\]

‘Anna left before Ken arrived.’

We account for the fact that the non-past tense embedded in the TAC is interpreted with respect to the matrix clause event time by assigning the following translation to the temporal connective mae ‘before’:

\[
(19) \text{mae ‘before’} = \lambda P \lambda t[Q(t) \& \text{AT}(t, \exists t[P(t) \& t < t_i])]
\]
The temporal connective requires the time \(t \) at which (the translation of) the matrix clause \(Q \) is interpreted to precede the time \(t_1 \) at which (the translation of) the embedded clause \(P \) is interpreted \((t < t_1)\). The local evaluation time of the embedded clause \(P \) is the matrix clause event time \(t \), given as the first argument of the AT predicate. The interaction of the interpretation of the temporal connective with the tenses embedded in the matrix and the embedded clause is spelled out in (20). The translation of the matrix clause (20a) and that of the embedded clause (20b) are temporal abstracts; they are the arguments of the temporal connective. The result of applying the meaning of the temporal connective to the temporal abstracts, several beta-reductions and existential closure is given in (20c).

(20) a. Anna leave-PAST \(\Rightarrow \lambda t[\text{AT}(t,\text{leave}'(a)) \& \text{PAST}(t)] \)

b. Ken arrive-NPST \(\Rightarrow \lambda t[\text{AT}(t,\text{arrive}'(k)) \& \text{NPST}(t)] \)

c. \(\exists t[\text{PAST}(t) \& \text{AT}(t,\text{leave}'(a)) \& \text{AT}(t_1,\text{arrive}'(k)) \& t < t_1)] \)

The matrix clause past tense (cf. (13)) is interpreted relative to the speech time \(s^* \) and hence locates the time \(t \) of Anna’s leaving prior to the speech time. The embedded non-past tense, however, is interpreted relative to \(t \), and hence locates the time \(t_1 \) of Ken’s arrival at or in the future of the time \(t \) of Anna’s leaving:

(21) \([[\text{NPST}(\varsigma)]]^{M,i,g} = 1 \) iff \(i \leq [[\varsigma]]^{M,i,g} \)

Since the temporal connective requires \(t \) to precede \(t_1 \), it is correctly predicted that (18) means that Anna left before Ken arrived\(^4\). (The complete model-theoretic interpretation of (20c) is spelled out in the Appendix.)

Ogihara’s analysis also predicts that the past tense is unacceptable in Japanese mae ‘before’ clauses:

\(^4\) Our analysis predicts that the eventuality denoted by clauses embedded by before (and its Japanese and Russian equivalents) is always realized in the actual world, which is not the case, cf. e.g. example (34). Previous analyses (e.g. Ogihara 1995, Arregui and Kusumoto 1998) assign different quantificational forces to before and after, following Anscombe (1964), to account for the potential non-veridicality of before. We assume instead, following Beaver and Condoravdi (2003), that the non-veridicality of before is fundamentally modal in nature and should not be attributed to a lexical idiosyncrasy, especially since the non-veridicality of before and the veridicality of after is cross-linguistically pervasive. We thus assume that the proper treatment of this issue comes from embedding our purely temporal analysis within an adequate analysis of modality, along the lines suggested by Beaver and Condoravdi (2003).
In such examples, a conflict arises between the interpretation of the embedded past tense and the interpretation of the temporal connective, as illustrated by the translation of (22) in (23):

(23) $\exists t [\text{PAST}(t) \& \text{AT}(t, \text{leave}(a)) \& \text{AT}(t, \exists t_1 [\text{PAST}(t_1) \& \text{AT}(t_1, \text{arrive}(k)) \& t < t_1])]$

The embedded past tense locates the time t_1 of the embedded clause prior to its local evaluation time t, the matrix clause event time. Since the temporal connective requires that t precede t_1, (23) is contradictory, thus correctly predicting that (22) is anomalous.

The lexical entry for *ato* ‘after’ is given in (24):

(24) *ato* ‘after’ $\Rightarrow \lambda P \lambda Q \lambda t [\exists t_1 (Q(t) \& P(t_1) \& t_1 < t)]$

Since here t is constrained to follow t_1, Ogihara’s analysis predicts that only the past tense is available in Japanese TACs with *ato* ‘after’.

English and Russian differ from Japanese in that past tense is acceptable in *before*-clauses (cf. section 2). We propose that the meaning of the temporal connectives in English and Russian differs from that of Japanese: English *before* and Russian *pered* ‘before’, just like Japanese *mae* ‘before’, require the time t of the matrix clause to precede the time t_1 of the embedded clause ($t < t_1$), but the local evaluation time of the embedded clause P is the speech time in English and Russian, not the matrix clause event time (cf. also Stump 1985 for an analysis of English that embodies essentially the same idea). This is achieved by the following translations:

(25) English *before* / Russian *pered* ‘before’ $\Rightarrow \lambda P \lambda Q \lambda t [\exists t_1 (Q(t) \& P(t_1) \& t_1 < t)]$

The difference between (25) and the lexical entry of Japanese *mae* ‘before’ in (19) is that, here, the denotation of the embedded clause (again, represented by the variable P) is not embedded under an AT predicate. Thus, the local evaluation time of the embedded clause is the local evaluation time of the matrix clause, namely the speech time. Consider the analysis of (26):

(26) Anna left before Ken arrived.

a. Anna leave-PAST $\Rightarrow \lambda t [\text{AT}(t, \text{leave}(a)) \& \text{PAST}(t)]$

b. Ken arrive-PAST $\Rightarrow \lambda t [\text{AT}(t, \text{arrive}(k)) \& \text{PAST}(t)]$

The lexical entry for English *after* and Russian *posle* ‘after’ is as follows:

(i) English *after* / Russian *posle* ‘after’ $\Rightarrow \lambda P \lambda Q \lambda t [\exists t_1 (Q(t) \& P(t_1) \& t_1 < t)]$
The temporal abstracts in (26a) and (26b) are the translations of the matrix clause and the embedded clause, respectively. After applying the translation of before to these arguments and applying existential closure, the translation of the whole sentence is (26c). Since the meaning contribution PAST(t) of the embedded past tense is not embedded under an AT predicate, it is interpreted with respect to the speech time, yielding the temporal order $t_1<s^*$. The temporal connective contributes the information that t temporally precedes t_1, which is not in conflict with $t_1<s^*$, thus, correctly predicting the interpretation of past tense before-TACs in English and Russian.

To sum up, this semantic analysis of the cross-linguistic variation in the distribution and interpretation of tenses in TACs is a synthesis (and modest extension) of Ogihara’s (1994, 1996) relative tense analysis of Japanese TACs and Stump’s (1985) absolute tense analysis of English TACs. In both analyses, the distribution of tenses in TACs is accounted for compositionally in terms of an interaction of the meanings of the temporal connectives and the embedded tenses. Our synthesis of the two analyses shows that a unified semantic treatment of the variation is possible if we allow the time that a temporal connective specifies as the local evaluation time of the embedded clause to vary from language to language.

3.3. Ogihara’s (1994, 1996) objections to Stump (1985)

Ogihara (1994, 1996) considers but rejects an analysis of English TACs where the embedded tense is interpreted relative to the speech time, cf. our analysis in section 3.2 and that of Stump (1985). Ogihara’s first objection is that such an analysis predicts that TACs with embedded future tenses, such as (27), are acceptable, contrary to fact:

(27) #John will leave when he will finish his book.

We argue that the fact that Stump’s and our analyses do not rule out such examples on semantic grounds is not a problem, but rather desirable in light of completely acceptable examples like (28). These were noted in Smith (1975: 73) and Ogihara (1994: footnote 7). We currently have no explanation for why (28) but not (27) is acceptable.

(28) John will leave when Mary will.

Ogihara’s second objection (Ogihara 1994: 255, Ogihara 1996: 184f) is that the analysis predicts interpretations that are not available. Consider the examples in (29), where the embedded non-past tense can only be interpreted as having future time reference.
a. John will call Mary after he finishes his assignment.
 b. John will call Mary before he finishes his assignment. (Ogihara 1994: 225)

Ogihara holds that since the non-past TAC is interpreted relative to the speech time in Stump’s analysis, it is predicted that the embedded clause could be interpreted at the speech time, contrary to fact.

We argue that this problem does not arise if the effect of Aktionsart on the temporal interpretation of clauses with non-past tense is taken into consideration. As noted at the beginning of section 2, the English non-past tense is not compatible with present and future time references in all of its occurrences. In particular, event-denoting verbs realized in the (simple) non-past tense have present time reference if interpreted habitually (30a) and receive a (scheduled) future time interpretation if episodic (30b).

(30) a. Anna sings.
 b. Anna sings tomorrow.

Since the TACs in (29) receive only an episodic interpretation, it is predicted that John’s finishing is located in the future of the speech time.

The following examples further suggest that only episodically interpreted TACs are possible. Both (31a) and (32a) are stative; if realized as a TAC, they are either coerced to an inceptive interpretation (31b), which is a kind of episodic interpretation, or highly marginal (32b).

(31) a. John believes Mary.
 b. John will be happy after he believes Mary.

(32) a. John knows Mary.
 b. *John will be happy after he knows Mary.

Thus, Ogihara’s objections to the kind of analysis developed in this section (and in Stump (1985) for English) do not hold up.

3.4. A pragmatic restriction on the interpretation of TACs

A more serious problem for our analysis as it currently stands, and for other analyses of TACs, too, including e.g. Ogihara (1996: 186), Arregui and Kusumoto (1998), Kusumoto (1999: 260-262), Beaver and Condoravdi (2003), is that the truth-conditional meanings assigned to certain examples do not suffice to predict their anomaly. We illustrate this for English; the corresponding Russian examples have the same problem. Consider the non-past variant of (6a) and the past variant of (7b), repeated in (33a) and (33b), respectively, along with the truth-conditional meanings assigned to them by our analysis (assuming that English will-futures are translated by FUT, which
is interpreted as \([\text{FUT}(\varnothing)]^{M,L,G} = 1 \text{ if } [\varnothing]^ {M,L,G} > t\).

(33) a. #Anna left [before Ken arrives].
\[\exists \exists t_1 [\text{PAST}(t) \& \text{AT}(t, \text{leave}(a)) \& \text{NPST}(t_1) \& \text{AT}(t_1, \text{arrive}(k)) \& t < t_1] \]
b. #Anna will leave [after Ken arrived].
\[\exists \exists t_1 [\text{FUT}(t) \& \text{AT}(t, \text{leave}(a)) \& \text{PAST}(t_1) \& \text{AT}(t_1, \text{arrive}(k)) \& t > t_1] \]

The truth-conditional meanings assigned to these examples by our analysis predict them to be acceptable since the constraints introduced by the tenses do not contradict those introduced by the temporal connectives.

Stump (1985: 146) proposes that such examples are ruled out on pragmatic grounds (cf. also Kusumoto 1999): he invokes Grice’s maxims, specifically “a principle of conversational economy” (p.146), to argue that examples like (33b) are pragmatically odd because the same information can be conveyed by a simpler assertion (namely, Ken arrived. Anna will leave.). Stump relies on the assumption that “[w]hen a speaker uses a sentence of the form \(\phi\) after \(\psi\), \(\phi\) before \(\psi\), s/he normally pragmatically presupposes the truth of \(\psi\)” (bold-facing in the original, p.146). However, as was pointed out by Heinämäki (1974) and others, the truth of \(\psi\) cannot always be presupposed: in (34), for example, truth of the hand count being completed cannot be presupposed since the hand count was not completed.

(34) On Dec. 9, the U.S. Supreme Court stopped the hand count before it was completed. (Beaver and Condoravdi 2003)

While we agree with Stump that examples like (33) are ruled out on pragmatic rather than semantic grounds (see evidence below), we propose that discourse conditions on temporal interpretation underly the pragmatic restriction. Temporal modifiers such as yesterday, at that time or in the afternoon can constrain the reference time of the clause they modify (cf. e.g. Dowty 1982, Hinrichs 1986). We assume that TACs (which are complex temporal modifiers) have a similar function, i.e. do more than just temporally relate two eventualities:

(35) The TAC constraint: The temporal reference of the TAC constrains the reference time of the matrix clause.

Examples like (33) are semantically acceptable but pragmatically infelicitous because they violate the TAC constraint: in (33a), the matrix past tense requires the reference time to be in the past of the speech time but the non-past TAC is not able to further constrain this reference time; likewise, in (33b), the matrix clause requires a future reference time, which the past tense TAC cannot further constrain. This accounts for the observation (cf. Stump 1985: 144) that English (and Russian) TACs are temporally interpreted in the
past (future) if the matrix clause is interpreted in the past (future). The TAC constraint accounts for this pattern on the basis of independently-motivated assumptions about how the reference time is restricted.

There is evidence that the oddness of examples like (33) should be accounted for pragmatically rather than semantically (e.g. by a semantic constraint along the lines of “A before/after-TAC is temporally interpreted in the past (future) of the speech time if the matrix clause is interpreted in the past (future) of the speech time.”). The evidence comes from Japanese:

 Ken-NOM arrive-NPST before-at Anna-NOM leave-PAST
 ‘Anna left before Ken arrived.’ (out-of-the-blue interpretation)

b. \[∃t [\text{PAST}(t) & \text{AT}(t, \text{leave}(a)) & \text{AT}(t, ∃t1 [\text{NPST}(t1) & \text{AT}(t1, \text{arrive}(k)) & t < t1])]\]

Recall that our semantics predicts only that the time of Ken’s arrival is non-past with respect to the past time of Anna’s leaving (36b), thus not constraining the location of the time of Ken’s arrival with respect to the speech time. Out of the blue, the most natural interpretation of (36a) is that Ken’s arrival precedes the speech time. This is predicted by the TAC constraint in (35): if the TAC is interpreted with past time reference, it can constrain the location of the matrix clause (past) reference time. The TAC constraint also correctly predicts that (36a) is infelicitous in a context where the speaker knows that Ken’s arrival is in the future of the speech time. In this case, the temporal location of the (veridical) TAC cannot constrain the matrix clause reference time; in such a context (36a) is infelicitous for exactly the same reason that the English examples in (33) and its Russian equivalents are ruled out.

However, as pointed out in Kaufmann and Miyachi (2008), certain Japanese TACs are felicitous even if the TAC is not interpreted with past (future) temporal reference when the matrix clause is interpreted with past (future) reference. (36a), for example, is felicitous in a context where the time of Ken’s arrival might be in the future of the speech time and, crucially, the speaker does not know whether Ken has already arrived at the speech time (i.e. the TAC receives a non-committal non-veridical interpretation, cf. Beaver and Condoravdi 2003). The sentence becomes especially natural in a context where the fact that Ken’s arrival has not yet happened at the time of Anna’s departure is significant in some way for the realization of the latter. Imagine, for example, that Anna and Ken are office mates but are on extremely bad terms with each other. One day, Anna decides to leave the office earlier than usual to avoid encountering Ken, who is expected to come in around the time she usually leaves. If Anna’s friend Karina leaves the office with Anna, she can later felicitously utter (36a) to express that Anna’s
leaving preceded Ken’s arrival (whenever that may be). What is crucial for
the felicity is that Ken was not at the office at the time of Anna and Karina’s
departure; Ken may or may not have come to the office by the time of
Karina’s utterance. In this context, the realization (and hence temporal
location) of the eventuality denoted by the TAC is unknown, and Ken may
arrive at the office after the speech time. If there was a semantic requirement
for TACs to be interpreted in the past (future) when the matrix clause is
interpreted in the past (future), we would not expect (36a) to be able to
receive this interpretation. As a pragmatic constraint, however, we expect
that the TAC constraint can be violated in certain contexts. Our discussion
above suggests that one such context is where the speaker does not know
whether the eventuality denoted by the TAC is realized. We leave for future
research the question of which other kinds of contexts can override the TAC
constraint in languages like Japanese.

4. Previous analyses

In this section we compare our analysis of the variation to the analyses
difference between our analyses and these is that, in the latter, the variation is
not accounted for semantically but as differences in the syntax-semantics
interface or the syntax of the languages. After presenting the two analyses in
sections 4.1 and 4.2, we argue in section 4.3 that the semantic approach has
both empirical and theoretical advantages.

As discussed in section 3.3, Ogihara explicitly rejects the assumption that
tenses in English TACs are interpreted relative to the speech time. Ogihara
instead proposes that tenses in English TACs, just like those in Japanese
TACs, are interpreted relative to the matrix clause event time, and that the
Sequence-of-Tense (SOT) rule obligatorily deletes embedded tenses at
Logical Form (LF) under identity with a c-commanding tense in the matrix
clause. Motivation for the existence of the SOT rule in English comes from
propositional attitude complements (PACs), as in (37):

(37) Ken said that Anna was sick.

(37) has two interpretations: a BACK-SHIFTED one, according to which Anna
was sick at a time prior to Ken’s saying, and an OVERLAPPING one, according
to which Anna was sick at the time of Ken’s saying. If the past tense
embedded in the PAC is interpreted with respect to the matrix clause event
time, the back-shifted interpretation is predicted since the embedded past
tense locates the time of Anna’s being sick prior to the matrix clause event
time. The overlapping reading, however, is not predicted. Ogihara’s SOT rule optionally applies to PACs at LF and deletes the embedded past tense (under identity with the past tense in the matrix clause). In (38), PAST indicates that the past tense has been deleted:

(38) LF of (37) after application of the SOT rule:

 Ken say-PAST [that Anna be-PAST sick]

This LF results in the overlapping interpretation of (37) since the embedded clause is now located in the past by the same past tense that locates the matrix clause eventuality in the past.6

Ogihara proposes that the SOT rule obligatorily applies to embedded tenses in TACs. As a result, examples like (39a) are predicted to be grammatical: the embedded past tense is deleted at LF (39b), and the resulting expression receives an interpretation according to which the time of Ken’s arrival is prior to the speech time (contribution of the matrix clause tense) and Anna’s leaving is prior to Ken’s arrival (contribution of the temporal connective):

(39) a. Anna left before Ken arrived.
 b. LF of (39a): Anna leave-PAST [before Ken arrive-PAST]

Ogihara’s SOT-based analysis of English and Japanese TACs captures the contrast in how tenses are distributed in TACs in the two languages. But it faces both empirical and theoretical problems. First, since the SOT rule applies at the level of Logical Form, the analysis can only be couched in theories that have a syntactic level of representation at which deletion operations are permissible. Second, Ogihara’s analysis stipulates that the SOT rule obligatorily applies in TACs but only optionally applies in PACs; this begs for a more principled account of the difference between tense interpretation in TACs and PACs (cf. Kubota et al. 2009 for discussion). Third, it is unclear whether Ogihara’s analysis extends to a wider set of languages. As pointed out in Arregui and Kusumoto (1998), tenses in Polish TACs are distributed like those of English in that e.g. the past tense is permitted in before-clauses with a past matrix clause (cf. (6a)). But unlike English PACs, Polish PACs do not motivate the existence of the SOT rule for Polish. We illustrate this for Russian, which behaves like Polish in all relevant respects. The Russian example in (40) only has the back-shifted interpretation where Anna was sick at a time prior to Ken’s saying (but see Altshuler 2008):

6 See Gennari (2003) for a critical assessment of the SOT-based analysis of PACs and an alternative semantic approach to the interpretation of tense in PACs.
Cross-linguistic variation in temporal adjunct clauses

(40) Ken skaza-l [čto Anna by-l-a bol’n-a].
 Ken say-PAST that Anna be-PAST-FEM sick-FEM
 ‘Ken said that Anna had been sick.’

Since (40) does not have an overlapping interpretation, Russian PACs do not motivate the existence of the SOT rule for Russian. If one assumes (as Arregui and Kusumoto 1998 seem to do) that a language either has the SOT rule or does not have it, Ogihara’s analysis of English and Japanese TACs cannot account for Polish and Russian TACs.

One could try to save Ogihara’s analysis by assuming that the availability of the SOT rule in a particular language is not determined on the basis of PACs but on a construction-by-construction basis. For example, one might say that the SOT rule obligatorily applies in Russian and Polish TACs and does not apply in Russian and Polish PACs (cf. Kondrashova’s 2005 discussion of Russian as a ‘split-SOT’ language). This would, however, make the undesirable typological prediction that there are many more language types than actually attested (namely nine, depending on whether the SOT rule applies obligatorily, applies optionally or does not apply in TACs or PACs). Since only three language types are actually attested, such a move does not seem plausible from a typological perspective.

More generally, analyzing the variation observed in English and Japanese TACs as a (two-way) distinction in whether the SOT rule is available or not has the same problem as the (two-way) typological classification of tenses as absolute or relative (cf. Section 2). As discussed in more detail in Kubota et al. (2009), English, Russian and Polish tenses cannot be classified as one or the other, thereby breaking down the classification and rendering problematic any analysis based on a binary distinction. Instead, we argue, there are language- and construction-specific constraints on the temporal interpretation of embedded tenses; these constraints determine what the local evaluation time for a particular tense is.

Arregui and Kusumoto (1998) analyze variation in the distribution and interpretation of tenses in English, Polish and Japanese. They propose that the variation is due to a syntactic difference between English and Polish on the one hand and Japanese on the other. In particular, they propose that the temporal connectives of English and Polish TACs select CPs whereas those of Japanese TACs select TPs. This syntactic difference has semantic repercussions since, according to Arregui and Kusumoto (1998), the speech time occurs in the head of CP:
Since English and Polish temporal connectives select a CP, the tense embedded in the TAC is interpreted relative to the speech time. The tense embedded in Japanese TACs, however, is interpreted relative to the matrix clause event time since the Japanese connectives select TPs. This predicts, in a way similar to our analysis, that the past tense is acceptable in before-TACs with matrix past tense clauses in English and Polish whereas the non-past tense, which Arregui and Kusumoto (1998) call the ‘present’ tense, is acceptable in Japanese mae ‘before’ TACs. We illustrate this for English in (42) and for Japanese in (43):

(42)
\begin{align*}
a. & \text{Anna left before [CP Ken arrived].} \\
\quad & \text{before: } \lambda P \forall t (P(t) \rightarrow t < t') \\
\quad & \exists t [t < s^* \& \text{leave}(a)(t) \& \exists t' [(t' < s^* \& \text{arrive}(k)(t')) \rightarrow t < t']]
\end{align*}

English TACs consist of CPs, as illustrated in (42a). Arregui and Kusumoto (1998) follow Heinämäki (1974) in assuming (42b) as the meaning of before. Consequently, both the matrix clause tense and the tense of the before-clause of (42a) are interpreted relative to the speech time, resulting in the interpretation in (42c).

In Japanese, temporal connectives select TPs, as illustrated in (43a):

(43)
\begin{align*}
a. & \text{[TP Ken-ga ku-ru] mae-ni Anna-ga kaet-ta.} \\
\quad & \text{Ken-NOM arrive-NPST before-at Anna-NOM leave-PAST} \\
\quad & \text{‘Anna left before Ken arrived.’} \\
\quad & \text{mae ‘before’: } \lambda P \forall t (P(t) \rightarrow t < t') \\
\quad & \exists t [t < s^* \& \text{leave}(a)(t) \& \exists t' [(t' < s^* \& \text{arrive}(k)(t')) \rightarrow t < t']]
\end{align*}

Given the meaning of mae ‘before’, the Japanese TAC is interpreted relative to the matrix clause event time, thus locating Ken’s arriving in the non-past of Anna’s leaving. The temporal connective locates the time of Ken’s arrival in the future of the time of Anna’s leaving.

The assumption that English and Polish (or Russian) connectives select CPs while those of Japanese select TPs does not yet suffice, however, to account for the distribution of tenses in TACs in the three languages. In particular, it does not yet account for the unavailability of past tenses in Japanese TACs such as (44a):

(44)
\begin{align*}
a. & \text{Anna left before [TP Ken arrived].} \\
\quad & \text{before: } \lambda P \forall t (P(t) \rightarrow t < t') \\
\quad & \exists t [t < s^* \& \text{leave}(a)(t) \& \exists t' [(t' < s^* \& \text{arrive}(k)(t')) \rightarrow t < t']]
\end{align*}
Cross-linguistic variation in temporal adjunct clauses

(44) a. # [TP Ken-ga ki-ta] mae-ni Anna-ga kaet-ta.
 Ken-NOM arrive-PAST before-at Anna-NOM leave-PAST
 (Intended: Anna left before Ken arrived.)

 b. ∃t [t < s* & leave(a)(t) & ∃t' [t' < t & arrive(k)(t')]]

The problem is that the semantics of mae ‘before’ and the tenses assign an interpretable translation to (44a): (44b) is true if and only if there is a time t prior to the speech time at which Anna leaves and all times t' are such that if there is a time t'' that precedes t' and at which Ken arrives, then t, the time at which Anna leaves, precedes t'. This is true, for example, if (44b) was uttered at 6pm in a situation in which Anna left at 3pm (t) and Ken arrived at 4pm (t'): in this case, Anna’s leaving would be before the speech time s*, and all times t' are such that if there is a time t'' before t' and Ken leaves at t'', then t precedes t'.

In order to exclude examples like (44a), Arregui and Kusumoto (1998) stipulate that Japanese mae ‘before’ bears a binder index (but not ato ‘after’): since the non-past tense in Arregui and Kusumoto’s (1998) analysis is a variable, mae ‘before’ can combine with non-past TPs but not with past TPs (past tense is not a variable but translates as λP.∃t' [t' < t & P(t')]). The resulting analysis of the cross-linguistic variation observed in English, Japanese and Polish (and Russian) TACs thus relies on a non-uniform syntax/semantics of the temporal connectives in Japanese, as well as a non-uniform syntax/semantics of the past and non-past tenses of the three languages.

4.3. Comparison of the analyses

The analyses of the cross-linguistic variation we reviewed in this section involve the syntactic component of grammar to different degrees: Ogihara (1994, 1996) provides a semantic analysis of Japanese TACs but assumes a deletion mechanism at LF to account for English TACs; Arregui and Kusumoto (1998) posit different structures for English and Russian/Polish TACs on the one hand and Japanese TACs on the other, and make recourse to syntactic differences between Japanese mae ‘before’ and ato ‘after’ to account for the Japanese data. By contrast, our analysis is based entirely on the semantic contributions of the tenses and the temporal connectives. The locus of variation is the meaning of the temporal connectives in the three languages.

Tense variation in TACs can receive analyses that attribute the variation to different components of grammar. The paper shows that a purely semantic analysis of the variation is possible, and should be considered a viable alternative. Choosing between alternatives that differ in whether the locus of
variation is in the syntax or in the semantics is difficult and also depends on larger theoretical questions. There are at least two arguments in favor of our semantic analysis. The first is its simplicity: only the lexical meaning of the temporal connectives varies, and the variation is accounted for on the basis of the interaction of the semantics of tenses and the temporal connectives. The second argument stems from our conviction that tenses are not just agreement markers, but like TACs have semantic/pragmatic functions; Arregui and Kusumoto (1998) seem to share this assumption, and Ogihara (1994, 1996) at least for Japanese. Variation in the distribution and interpretation of tenses should therefore preferably be treated as semantic rather than syntactic variation.

5. Conclusion

This paper has developed a formal semantic analysis of cross-linguistic variation in the interpretation of tenses in English, Japanese and Russian temporal adjunct clauses. Taken as a case study of examining the range of possible analyses of variation that involves convergence of meaning in light of different morphosyntactic means, we have shown that a semantic analysis is possible and a viable alternative. Variation in other empirical domains can also be subjected to this line of inquiry: Kubota et al. (2009), for example, extend the empirical domain covered in this paper to include tenses embedded in propositional attitude complements.

References

such that

\[(47)\]

Thus, \[(51)\]

In other words, \[(49)\]

The last line of \[(45)\] is analyzed as follows:

\[(47)\] if there is some \(g'\) such that \(g' = g\)

(except possibly that \(g'(t) \neq g(t)\) and \([\text{PAST}(t) \& \text{AT}(t, \text{leave}(a)) \& \text{AT}(t, \text{arrive}(k)) \& t < t_i)\])

where \(i = [t_i]^{M,s,g} = g(t)\)

iff there is some \(g''\) such that \(g'' = g'\) (except possibly that \(g''(t_i) \neq g(t_i)\)) and

a. \([\text{NPST}(t_i)]\) \(M_{w,i,g}^{w,i,g} = 1\) and

b. \([\text{AT}(t, \text{arrive}(k))]\) \(M_{w,i,g}^{w,i,g} = 1\) and

c. \([[[t_i]]^{M_{w,i,g}} = [t_i]^{M_{w,i,g}}\) if \(g'(t_i) \leq g''(t_i)\)

(48)

Thus, \((47a-c)\) are true iff

a. \(g'(t) < g''(t_i)\) (from \((47a,c) = (48a,c)\)) and

b. \([\text{arrive}(k)]\) \(M_{w,i,j}^{w,i,j} = 1\) (where \(i = g''(t_j)\)) (from \((47b) = (48b)\))

Thus, \((47)\) is true iff there is some \(g''\) such that \(g'' = g'\) (except possibly that \(g''(t_i) \neq g'(t_i)\)) and

(50)

In other words, \((47)\) is true iff there is some time \(t_i\) such that:

(51) a. \(g'(t) \leq t_i\) and

b. \([\text{arrive}(k)]\) \(M_{w,i,j}^{w,i,j} = 1\)

Thus, \(\暹\) is 1 iff there is some \(g'\) such that \(g' = g\) (except possibly that \(g'(t) \neq g(t)\)) and \(g'(t) < s^b\) and \([\text{leave}(a)]\) \(M_{w,i,g}^{w,i,g} = 1\) (where \(i = g'(t)\)) and

(47). i.e. \(\暹\) is 1 iff there are some times \(i = g'(t)\) and \(t_i = g''(t)\) such that \(i < s^b\) and \(i < t_i\) and \([\text{leave}(a)]\) \(M_{w,i,j}^{w,i,j} = 1\) and \([\text{arrive}(k)]\) \(M_{w,i,j}^{w,i,j} = 1\).