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Abstract

This paper proposes a novel structured

vectorial semantic framework, incorpo-

rating cognitively-motivated ‘gist’ se-

mantics as selectional restrictions in in-

teractive vectorial-semantic parsing. Ap-

plying vectorial semantic techniques (in

particular, relational clustering over de-

pendent headwords) in this extended

framework has a predictable positive im-

pact on parsing accuracy. The vectorial

representation is conducive to a fast im-

plementation of necessary parser opera-

tions, despite the fact that vectorial se-

mantic techniques have dense relations

to propagate through the parse chart.

1 Introduction

Vectorial semantic representations like Latent

Semantic Analysis (Deerwester et al., 1990),

probabilistic LSA (Hofmann, 1999; Hofmann,

2001), Latent Dirichlet Allocation (Blei et al.,

2003), relational clustering (Taskar et al., 2001),

or tensor clustering (Banerjee et al., 2007) pro-

vide a means of exploiting hidden or ‘latent’ se-

mantics. These kinds of models have been de-

scribed as ‘gist semantics’ and likened to the

associative properties of human memory (Lan-

dauer and Dumais, 1997; Kintsch, 2001). Vec-

tor semantic spaces are typically based on co-

occurrences between words (Lund and Burgess,

1996) in one or more relations, expressed as ma-

trices, and employed for the purpose of improv-

ing accuracy in document search.

This paper proposes a novel structured

vectorial semantics, incorporating cognitively-

motivated ‘gist’ semantics as selectional restric-

tions in an interactive vectorial-semantic pars-

ing framework. Vectorial semantics are used in

a generative parser by factoring an augmented

PCFG model into (roughly) syntactic compo-

nents and semantic components. Both compo-

nents are encapsulated in vectors and matrices;

they are recursively composed using matrix mul-

tiplication and diagonal listing.

Vectorial semantics are expected interact con-

structively with syntax because they leverage ob-

served robust semantic information in the recog-

nition task. Word co-occurrence matrices are

reduced in dimensionality to capture their most

salient information in fewer, denser concepts.

Relationships between these denser concepts are

similar in meaning to relationships between the

words from which they were derived, but they

are less prone to data sparsity. Thus, including

such semantic relationships alongside syntactic

structure provides a robust, complimentary re-

source in an interpretation framework.

Typically, vectorial semantics techniques

model documents as unstructured bags of words,

but there has been recent interest in considering

syntactic information alongside semantics (Grif-

fiths et al., 2005; Boyd-Graber and Blei, 2008;

Padó and Lapata, 2007; Erk and Padó, 2008),

even synthesizing vectorial semantics with pars-

ing (Mitchell and Lapata, 2009). Extending or

using these models for broad-coverage parsing

requires an interpolation of the results from an

independent semantic composer and from a syn-

tactic parser. In contrast, the proposed model

fully interleaves vectorial semantic composition

with the recursive construction of phrase struc-



ture in parsing.

Two preliminary instantiations of the struc-

tured vectorial semantic framework are pre-

sented and evaluated: lexicalized parsing

(Collins, 1997; Eisner and Satta, 1999, etc.) and

relational clustering (akin to latent annotations

(Matsuzaki et al., 2005; Petrov et al., 2006)).

Vectorial semantic techniques are applied in

the latter of these, yielding a predictable posi-

tive impact on parsing accuracy. In addition, the

vectorial representation is conducive to a fast im-

plementation of necessary parser operations; this

is despite the fact that vectorial semantic tech-

niques have dense, dimensionality-reduced rela-

tions to consider and propagate through the full

syntactic structure of hypothesized parses. It is

hoped that this plausible, flexible framework will

enable new generations of cognitive models and

evaluations.

The remainder of this paper is organized as

follows: Section 2 describes the theoretical

framework; Section 3 instantiates the framework

with relational clusters; and Section 4 evaluates

modeling assumptions and parsing performance.

2 Structured Vectorial Semantics

2.1 Syntactic Parsing

The parsing framework for including seman-

tic clusters is based on standard probabilistic

context-free grammars. This paper will denote

syntactic categories as c and string yields as x.

The location of these variables in phrase struc-

ture will be identified using subscripts that de-

scribe the path from the root to the constituent.1

Paths consist of left and/or right branches (indi-

cated by ‘0’s and ‘1’s respectively, or variables

ι), concatenated into sequences η, and ǫ is the

empty sequence at the root. The yield xη is

the observed (sub)string which eventually results

from the progeny of cη. Multiple trees τη can be

constructed at η by stringing together grammar

rules that are consistent with observed text.

For a phrase structure tree rooted at a con-

stituent of category cη with yield xη, the task of

parsing will require the calculation of the Viterbi

1For simplicity, trees are assumed to be compiled into
strictly binary-branching form.

(best) tree and substring probability. These

can be calculated using probabilities assigned to

grammar rules PθG
(cη→cη0 cη1) in a probabilis-

tic context-free grammar (PCFG) model θG.

Any yield xη can be decomposed into (assem-

bled from) prefix xη0 and suffix xη1 yields, i.e.,

xη = xη0 xη1. Viterbi scores (probability of the

best tree) maximize over such decompositions:

PθVit(G)
(xη ∣ cη) = max

xη0cη0,xη1cη1

PθG
(cη → cη0 cη1)

⋅ PθVit(G)
(xη0 ∣ cη0) ⋅ PθVit(G)

(xη1 ∣ cη1) (1)

and the corresponding tree τ̂η can be constructed

from best child trees τ̂η0 and τ̂η1.

Given some prior model PπG
(cǫ), the proba-

bility at the root node can be obtained:

P(xcǫ) = PθVit(G)
(x ∣ cǫ) ⋅ PπG

(cǫ) (2)

The Viterbi probability PθVit(G)
(x ∣ cǫ) that

maximizes this root probability will have an as-

sociated tree τ̂ǫ that includes the root syntactic

category cǫ; this tree can be constructed by refer-

ring back to best subtrees at its children, τ̂0 and

τ̂1, as in a standard CKY algorithm.

2.2 Syntactic–Semantic Parsing

In grammatically-structured semantics, both se-

mantic concepts (written i) and relations (writ-

ten l) between these concepts are tied to gram-

matical structure. The task, then, is to jointly de-

termine what syntax and semantics best match

the observed input.

Figure 1 shows an example of a tree that has

concepts i, relations l, and syntactic categories

c annotated. A probabilistic grammar producing

this figure would expand differently for each dif-

ferent concept iη in a domain of concepts E.

Instead of directly generating joint lciη proba-

bilities (collocated variables are indexed together

for clarity), such a syntactic–semantic grammar

rule can be factored into (loosely) a syntactic

component and a semantic component.

PθG
(lciη → lciη0 lciη1) =

PθM
(lciη → lcη0 lcη1)

⋅ PθL
(iη0 ∣ iη; lη0) ⋅ PθL

(iη1 ∣ iη; lη1) (3)



iǫ
(lMOD )S

i0
(lMOD)NP

i00
(lMOD )DT

the

i01
(lID )NN

engineers

i1
(lID )VP

i10
(lID )VBD

i100
(lID )VBD

pulled

i101
(lMOD )PRT

off

i11
(lMOD )NP

i110
(lMOD )DT

an

i111
(lID )NN

i1110
(lMOD )NN

engineering

i1111
(lID )NN

trick

Figure 1: Syntax and semantics annotated on a

tree. Concepts i are subscripted with the node’s

address. Relations l and syntactic categories c

are specific to the example.

In the θM model, concepts constrain the gener-

ation of syntax and of acceptable relations for a

child constituent. In the θL models, child con-

cepts are probabilistically connected to parent

concepts on the basis of the θM-generated child

relations. The semicolon in PθL
(iηι ∣ iη; lηι) is

used to show that the relationship is between par-

ent and child concepts, but that the probability is

parameterized by (and thus conditioned on) lη.

Viterbi probabilities from Eqn. 1 are extended

by marginalizing out child concepts iη0 and iη1.

PθVit(G)
(xη ∣ lciη) =

max
xlcη0,xlcη1

∑
iη0,iη1

PθG
(lciη → lciη0 lciη1)

⋅ PθVit(G)
(xη0 ∣ lciη0) ⋅ PθVit(G)

(xη1 ∣ lciη1) (4)

A possible alternative would be to take the max-

imum over iη0 and iη1. Grammar rule probabili-

ties from θG are factored as in Eqn. 3.

Then, given a prior probability PπGǫ
(lciǫ), the

probability at the root is:

P(x lcǫ) =∑
iǫ

PθVit(G)
(xǫ ∣ lciǫ)⋅PπGǫ

(lciǫ) (5)

where again, the maximum root probability has

a Viterbi probability with corresponding most

likely tree τ̂ǫ.

One obvious reason to factor into θM and θL is

to reduce the sparsity of training data: syntactic

grammars have potentially ∣C ∣3 rules, whereas

unfactored structured semantic rules could have

(∣C ∣∣L∣∣E∣)3 rules.

But the crucial point is that models without

this factorization (Matsuzaki et al., 2005; Petrov

et al., 2006) will be unable to maintain a cohe-

sive semantic representation across all syntactic

constituents. Such strategies have proven useful

for parsing, where the only output of concern is

a parse tree (or qualitative analyses of the state-

split constituents). However, all other uses for

vector-space semantics, such as judging docu-

ment (or sentence, or phrase, or word) similarity,

are precluded from non-cohesive models.

2.3 Structured Vectorial Semantic Parsing

A framework is now needed by which

grammatically-structured semantics can be

cast as vectors and parsed. For structured vecto-

rial semantics, a vector or matrix will represent

probabilities in a semantic space. Notation and

definitions are provided here for encapsulating

probability distributions in vectors, and for

defining parsing probabilities over those vectors.

This paper will use boldfaced uppercase let-

ters to indicate matrices (e.g., relations L), bold-

faced lowercase letters to indicate vectors (e.g.,

concepts e), and no boldface to indicate any

single-valued variable (e.g. labels l that indicate

which L to use). Often, these variables will tech-

nically be functions with arguments written in

parentheses, producing the expected vectors or

matrices (e.g., L(lη) will produce some matrix

based on the argument lη).

Indices of vectors and matrices will be asso-

ciated with semantic concepts (e.g., i1, . . . , i∣e∣);

variables over those indices are single-value

(scalar) variables (e.g., iη). The contents of vec-

tors and matrices can also be accessed by index

(e.g., e[i1] for a constant, e[i] for a variable).

This article will adopt the convention that col-

umn indices of vectors or matrices represent val-

ues of conditioned semantic variables, and row

indices represent values of modeled variables.

A running example corresponding to the best

parse of the first two words of Figure 1 will

illustrate the definitions and operations pre-

sented in this section, using the concrete seman-

tic space of headwords.2 In this example do-

2Headwords are usually considered a syntactic feature,



main, assume that the space of concept head-

words is E = {hpulled,hthe,hunk}, abbreviated as{hp,ht,hu} where the last concept is a constant

for infrequently-observed words.

First, per-concept Viterbi probabilities in a

syntactic context lcη are encapsulated as column

vectors:

eη = iη ↦ PθVit(G)
(x ∣ lciη) (6)

where iη ↦ ⋯ indicates that what follows is

an element-by-element definition of eη. So at

the level of word generation from address 0 in

the example, the left child concept will be as-

signed from a special preterminal Viterbi prob-

ability PθP-Vit(G)
(the ∣ lMOD ∶DT{ht}), and the right

child will be from PθP-Vit(G)
(egrs. ∣ lID ∶NN{hu}):

e00 =

h
ea

d
w

o
rd

s
h

u
h

t
h

p

truth⎡⎢⎢⎢⎢⎢⎣
0

1

.1

⎤⎥⎥⎥⎥⎥⎦
e01 =

h
ea

d
w

o
rd

s
h

u
h

t
h

p

truth⎡⎢⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎥⎦
(6′)

Next, grammar probabilities are encapsulated

per-concept in the M matrix. There is a different

diagonal matrix for each binary rule:

m(lcη ¢ lcη0 lcη1)
def
= iη↦PθM

(lciη→lcη0 lcη1)
M(lcη→ lcη0 lcη1)

def
= d(m(lcη¢ lcη0 lcη1)) (7)

where d(⋅) lists the elements of a column vec-

tor on the diagonal of a diagonal matrix. For

our example, assume the following rule expan-

sion probabilities:

M(lMOD ∶NP→ lMOD ∶DT lID ∶NN) =

p
a
re

n
t
η

h
u
h

t
h

p

parent η
hp ht hu

[.2 0 0

0 .1 0

0 0 .4
]
(7′)

Relation matrices L are functions from parent

concepts iη to child concepts iη0 or iη1.

L(lηι) = Lη×ηι(lηι)
def
= iη↦iηι↦PθL

(iηι ∣ iη; lηι)
(8)

In the example, a nonterminal constituent

will share its headword with one of its sub-

constituents (its head), so this sub-constituent

but are also degenerate semantics (one-word concepts that
summarize the information below them). This semantic
space definition accomplishes bilexical parsing (Charniak,
1997; Collins, 1997; Eisner and Satta, 1999). A more plau-
sible semantic model is in Section 3.

will relate to its parent via the identity matrix

L(lID) = I. The other sub-constituent will use a

general modifier relation3
L(lMOD). The modifier

relation may plausibly be:

L0×00(lMOD) =

p
a
re

n
t
0

h
u
h

t
h

p

child 00
hp ht hu

[0 .2 .8
0 0 1

.1 .4 .5
] (8′)

Next, the prior probability of a constituent is a

row vector, distributed over iη:

a
T
η = iη ↦ PπG

(lciη) (9)

This is the prior probability of any constituent

in the grammar, similar to the root constituent

prior probability πGǫ. As an example of the prior

probability of an NP with each concept:

a
T
0 = [ .1 .1 .8 ] (9′)

Combining Eqn. 6 (and 4) with these vector

and matrix encapsulations of probability distri-

butions, parsing probabilities can be encapsu-

lated in a vector:

eη = iη ↦ ∑
iη0,iη1

PθG
(lciη → lciη0 lciη1)

⋅PθVit(G)
(xη0 ∣ lciη0) ⋅ PθVit(G)

(xη1 ∣ lciη1)
= iη ↦ PθM

(lciη → lcη0 lcη1)
⋅ ∑
iη0

PθL
(iη0 ∣ iη; lη0) ⋅ PθVit(G)

(xη0 ∣ lciη0)
⋅ ∑
iη1

PθL
(iη1 ∣ iη; lη1) ⋅ PθVit(G)

(xη1 ∣ lciη1)
=M(lcη → lcη0 lcη1)

⋅ d(L(lη0) ⋅ eη0) ⋅ d(L(lη1) ⋅ eη1) ⋅ 1 (10)

The syntactic–semantic grammar rule factoriza-

tion is first applied; the result is rearranged to

show how it is equivalent to a chain of vector

and matrix products.

The vector alone does not include the syntac-

tic information necessary for the parser. So we

need to define a Viterbi probability over this vec-

tor and relevant syntactic variables:

PθVit(G)
(xη ∣ lceη)def

= J eη = argmax
lceι

a
T
ιeι K (11)

3In some bilexical parsers, the lexical head may be con-
ditioned on phrasal categories — or other local factors such
as whether the child is before or after the head. This is done
in the present framework by diversifying the set of labeled
relations: e.g., L(lMOD,S,NP).



where J⋅K is an indicator function such that

JφK=1 if φ is true, 0 otherwise. The determinis-

tic probability means that we will construct the

vector according to Eqn. 10 and pick the best

children with probability 1. Assuming the rule

expansion in the example is the best choice, we

will have:

PθVit(G)
(x0 ∣ lce0) = Je0 =

h
u

h
t

h
p

truth⎡⎢⎢⎢⎢⎢⎣
0

0

0.036

⎤⎥⎥⎥⎥⎥⎦
K (11′)

In vectorizing the notation, a minor differ-

ence has been introduced. Eqn. 4 defined

PθVit(G)
(xη ∣ lciη) as the maximum over child ex-

pansions. However, careful scrutiny of the vec-

torized version in Eqns. 10 and 11 reveals that

the maximum includes πG and occurs outside the

per-element definition of θVit(G).

This approximation allows us to deal with se-

mantic vectors as the canonical form, and is eval-

uated in Section 4.1. Then, determining the root

constituent of the Viterbi tree is the same process

as choosing any other Viterbi constituent, maxi-

mizing over the posterior.

P(x lcǫ) = a
T
ǫ ⋅eǫ ⋅PπGǫ

(lcaT
ǫ)⋅PθVit(G)

(x ∣ lceǫ)
(12)

The first two terms give the encapsulated proba-

bilities, and the last two terms deterministically

ensure that the tree τǫ is indeed the one gener-

ated. As before, the most likely tree τ̂ǫ is the tree

that maximizes this probability, and can be con-

structed recursively from the best child trees.

Eqns. 6–12 complete the linear algebraic defi-

nition of structured vectorial semantics. Notably,

τ̂ǫ has an associated vector with a distinct likeli-

hood for each i in ∣E∣which may be construed as

the composed vectorial semantic information for

the whole parsed sentence. Similar vectors can

be obtained anywhere on the parse chart.

3 SVS with Relational Clusters

There are many semantic spaces to choose from

to instantiate a structured vectorial semantics

(SVS). Headword-lexicalization SVS, as in the

example above, uses lexical items as indices

(i ≡ h) in all of the probability models necessary

for SVS: θM, θL, θP-Vit(G), πGǫ, and πG. Based on

these relative frequency-estimated models, this

section will redefine the SVS equations to deal

with relational clustering of headwords.

Typical vector-space models define co-

occurrences on documents, but here co-

occurrences will be defined such that the

approach extends headword-lexicalization SVS.

Thus, we will use EM to learn clusters from

parent–child headword pairs in the context of

the child’s (head or modifier) relation, l.

The result will resemble automatic state-

splitting techniques, like those described in Mat-

suzaki et al. (2005). Like those approaches, the

resulting ‘latent annotations’ (i.e., concept vec-

tors) will bear both syntactic and semantic infor-

mation, but the SVS representation is unique in

being able to quantitatively capture a distribution

over cohesive concepts at the end of parsing.

The parameters of three probability models

will be estimated in EM:

1. P̂πE
(iη), the prior probability of each se-

mantic cluster

2. P̂θL
(iηι ∣ iη; lηι), the probability that a par-

ent concept iη will produce a child concept

iηι if the associated relation is lηι

3. P̂θH
(hηι ∣ iηι), a probabilistic mapping from

clusters to headwords

In sum, there are ∣E∣+∣E∣2∣L∣+∣E∣∣H ∣ parameters

to estimate. These are randomly initialized for

the Expectation–Maximization (EM) algorithm.

E-step:

P̂(ihη, ihηι lηι) = ⋅P̂θH
(hη ∣ iη) ⋅ P̂θH

(hηι ∣ iηι)
⋅ P̂θL
(iηι ∣ iη; lηι) ⋅ P̃(lηι) ⋅ P̂πE

(iη) (13)

P̃(ihη, ihηι lηι) =
P̂(ihη, ihηι lηι)

∑hη ,hlηι
P̂(ihη, ihηι lηι) ⋅ P̃(hη, hηιlηι) (14)



M-step:

P̂πE
(iη)← ∑

hη ,ihlηι

P̃(ihη, ihηι lηι) (15)

P̂θH
(hη ∣ iη)← ∑ihlηι

P̃(ihη, ihηι lηι)
∑hη ,ihlηι

P̃(ihη, ihηι lηι) (16)

P̂θL
(iηι∣ iη; lηι)← ∑hη ,hηι

P̃(ihη, ihηι lηι)
∑hη ,ihηι

P̃(ihη, ihηι lηι) (17)

Using the estimated models from EM, we can

redefine the parser models θM, θL, θP-Vit(G), πG,

and πGǫ. To do so, intermediate distributions

P(iη ∣hη) and P(hη ∣ lciη) are calculated from

estimated models P̂(⋅) and frequency-counted

models P̃(⋅) using Bayes’ rule and marginaliza-

tion.

First, the relationally-clustered version of syn-

tactic child generation θM is defined in terms of

the headword-lexicalization version of θM.

P̂θM
(lciη → lcη0lcη1) =
∑
hη

P̃θM
(lchη → lcη0lcη1) ⋅ P(hη ∣ lciη) (18)

The clustered model of relations θL is already

trained by the EM algorithm, P̂θL
(iηι∣ iη; lηι).

We might expect it to be rewritten in terms of

the lexicalized version of the same model, but

that ‘rewriting’ was already done in the EM al-

gorithm. Clustering is intentionally done on only

the semantic portion of the model.

Viterbi likelihoods at preterminal nodes are

calculated from the lexicalized version, similar

to θM.

P̂θP-Vit(G)
(xη ∣ lciη) =
∑
hη

P̃θP-Vit(G)
(xη ∣ lchη) ⋅ P(hη ∣ lciη) (19)

Finally, prior probabilities are also derived

from lexicalized versions.

P̂πGǫ
(lciǫ) =∑

hǫ

P(iǫ ∣hǫ) ⋅ P̃πGǫ
(lchǫ) (20)

P̂πG
(lciη) =∑

hη

P(iη ∣hη) ⋅ P̃πG
(lchη) (21)

Sentence probabilities or Viterbi trees can then

be found as in Eqn. 5.

Cluster i1 Cluster i4 Cluster i6 Cluster i9

unk 0.984
years 0.005
stock 0.003
exchange 0.003
industry 0.002
service 0.001
tax 0.001
research 0.0006

to 0.140
for 0.061
at 0.056
unk 0.042
with 0.031
as 0.024
on 0.019
than 0.019

and 0.075
$ 0.032
it 0.020
mr. 0.019
but 0.016
an 0.015
will 0.014
or 0.011

of 0.115
said 0.066
million 0.057
was 0.041
billion 0.020
company 0.015
is 0.014
rose 0.012

Table 1: Sample clusters for the 5,000-

headword, 10-concept model, with probabilities

from θH.

It should be clear that the clustered concepts

in this parser can be viewed as a generalization

of lexicalization. The key is that for the same

domain of relations L, clusters share information

whereas headwords do not.

For some number of headwords, EM finds a

defined (smaller) number of concept clusters. By

grouping similar words together, the clusters en-

capsulate latent semantic information in appro-

priate relational context l. One might hypothe-

size that latent information would contain infor-

mation about word class, semantic role, or some

other generalization of lexical items.

4 Evaluation

Sections 02–21 of the Wall Street Journal (WSJ)

corpus were used as training data; Section 23

was used for standard parse evaluations. Trees

were binarized; then, each branch was anno-

tated with a head relation lID or a modifier re-

lation lMOD according to a binarized version of

headword percolation rules (Magerman, 1995;

Collins, 1997), and the headword was propa-

gated up from its head constituent. A set num-

ber of headwords (e.g., h1, . . . , h50) were stored,

and the rest were assigned a constant, ‘unknown’

headword category.

From counts on the binary rules of these an-

notated trees, the θM, θL, and πG probabilities for

headword lexicalization were obtained. Modifier

relations lMOD were deterministically augmented

with their syntactic context; both c and l sym-

bols appearing fewer than 10 times in the whole

corpus were assigned ‘unknown’ categories.

These lexicalized models served as a baseline,

but they were also inputs to the EM algorithm



WSJ Sec. 23 no punct LR LP F
no vec, 00hw 75.54 76.11 75.83
vectorized, 00hw 75.54 76.15 75.84

no vec, 10hw 75.46 76.26 75.86
vectorized, 10hw 75.45 76.26 75.85

no vec, 50hw 76.15 76.77 76.46
vectorized, 50hw 76.20 76.85 76.52

Table 2: Negligible effect of vectorization for

lexicalized models.

for relationally-clustered SVS, which used ∣E∣=
10 clusters, seeded random initialization, and a

maximum of 100 iterations.

Table 1 shows the top headwords from 4 ex-

ample clusters for the largest evaluated head-

word model. The four concepts shown can be

seen to have internal similarities and intuitive in-

terpretations, both semantic and syntactic in na-

ture. For example, i9 seems to prefer words con-

cerning fiscal performance. These clusters may

seem less interpretable than latent annotations or

POS-splits (Petrov et al., 2006), but it should be

again stressed that these concepts remain con-

stant over all syntactic categories.

Note also that the probabilities P̂θH
(h ∣ i) over

different headwords are quite uneven. This is

because clusters scope out different shapes and

sizes in the semantic space.

Several plain CKY parsers were implemented,

each operating with or without vectors (i.e., the

factored-model matrix multiplications), and with

or without the EM-learned relational clusters.

Evaluations were run on 2.83 GHz Intel Core™

2 Quad processors.

4.1 Effect of Vectorization on Accuracy

Recall that an approximation had to be made in

Eqn. 11 in order to allow for Viterbi trees to be

calculated on whole vectors, rather than on indi-

vidual elements of each vector. Table 2 shows

that vectorization with approximation produces

negligible parsing accuracy differences.

Thus, it is possible for a CKY parser to proba-

bilistically decide between whole vectors, rather

than separately considering each concept’s best

syntactic rules. Since the process of vector-

ization itself incurs no penalty, different vecto-

rial semantic spaces can be freely applied to the
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Figure 2: Speed of relationally-clustered SVS

parsers, with and without vectorization.

parser.

4.2 Effect of Vectorization on Speed

A CKY parser, as used for this implementa-

tion, has worst-case O(n3 ⋅ ∣L∣3∣C ∣3∣E∣3) run-

time. While this may be acceptable in typical

lexicalized models, the factorization from Sec-

tion 2.2 additionally requires up to ∣E∣2 multipli-

cations for each syntactic rule. With dense re-

lational distributions, clusters incur a larger cost

than the comparatively sparse information found

in bilexical dependencies.

Of course, both models may be sped up con-

siderably by using coarse-to-fine parsing, prun-

ing, and other methods. But for vectorial mod-

els, contiguous storage of information intuitively

leads to more efficient multiplication of relevant

probabilities. Thus, improvements in parsing

speed for dense, relationally-clustered semantics

may be an implementational windfall from vec-

torization.

The plot in Figure 2 compares simple CKY

implementations of a relationally-clustered SVS

model with and without vectorization on sen-

tences (ordered by length) on WSJ Section

23 without punctuation. The un-vectorized,

relationally-clustered model was cut off because

it was impractically slow on longer sentences.

Regression analysis shows that these are indeed

cubic; the constant in front of O(n3) is 0.66505

without vectorization, and 0.00267 with vector-

ization. In other words, the cost of accessing

the grammatical constituents and performing the

factored multiplications was greatly reduced by

vectorization.



WSJ Sec. 23 no punct ≤ 40 LR LP F
syntax only: 76.25 76.83 76.54

baseline 10hw: 76.24 77.04 76.64
baseline 50hw: 76.84 77.48 77.16

baseline 100hw: 77.30 77.71 77.57
50hw→ 10 clust: 75.29 75.75 75.52

100hw→ 10 clust: 76.69 77.20 76.95
500hw→ 10 clust: 78.13 78.19 78.16

1000hw→ 10 clust: 79.54 79.78 79.66
5000hw→ 10 clust: 80.89 80.83 80.86

WSJ Sec. 22 punct ≤ 40 LR LP F
syntax only : 80.3 79.9 80.1

1000hw→ 10 clust: 84.36 84.06 84.21

Table 3: Recall, precision, and F-score for un-

smoothed lexicalized CKY parsers (top) versus

parsers with 10 semantic clusters (bottom).

4.3 Effect of SVS Models

The most demonstrative evaluations for this pa-

per compare head-to-head parsing accuracy for

syntax-only parsing, headword-lexicalized SVS,

and relationally-clustered SVS. Similar to eval-

uations on latent-annotation parsing, the base-

line syntax case is unadorned, with only a head-

preserving (Magerman, 1995) binarization.

In this way, the contribution of the psy-

cholinguistically plausible vector space will not

be confused with other methods that implicitly

model some semantics (e.g., POS splitting). Ta-

ble 3 shows precision, recall, and F-score for

each of the models.

First, consider whether SVS faithfully per-

forms lexicalized parsing. With 10 headwords

in headword-lexicalization SVS, there is an in-

significant increase in parser accuracy, but at 50

and 100 headwords the gains in lexicalization

are consistent with existing literature (Gildea,

2001). Thus, the syntactic–semantic factoriza-

tion in SVS does not invalidate the expected

gains of lexicalization.

Next, semantics with 50 headwords clustered

into 10 concepts decreases performance from

even an unlexicalized baseline. This is likely due

to degenerate cluster formation, since the occur-

rence of the “unk” in 50-headword trees dom-

inates all other headwords. The effect is still

somewhat present with 100 headwords.

However, a randomly-initialized 5,000-

headword, 10-cluster model vastly outperforms

a 10-concept lexicalized model, even though the

two have theoretically equivalent state spaces.

Increasing the headwords in a lexicalized model

leads to a plateau in efficacy, so no comparison

to a 5,000-headword lexicalized model was

done.

Moreover, this 10-cluster model outperforms

an unlexicalized baseline (without punctuation)

by 4.22 percentage points; performance is pre-

served over a higher baseline (with punctuation)

using a similar model to obtain a 4.11 absolute

point gain.

The relationally-clustered models bear much

more rich and useful information for pars-

ing than do headwords. Of course, some of

these gains are from the implied syntactic state-

splitting, since SVS blurs the lines between syn-

tax and semantics. But composing vectors that

have cohesive semantic representation may be

hypothesized to model selectional preferences

and other semantics-level processes that are not

explicitly modeled in other approaches.

5 Conclusion and Future Work

This paper has introduced a structured vectorial

semantic modeling framework that fully inter-

leaves a coherent vectorial semantic component

with syntactic parsing. The language model was

motivated with probabilities in standard PCFG

parsing, but these probabilities were then encap-

sulated in vectors and matrices. Vectorization

proved to have no deleterious effect on parsing

accuracy; rather, it improved parsing speed.

Two instantiations were explored and eval-

uated: headword-lexicalization SVS and

relational-clustering SVS. It was found that

relationally-clustered SVS vastly outperformed

the simpler lexicalized model, partially ac-

complishing automatic state-splits while still

maintaining a coherent semantic representation

over all constituents.

Finally, it is hoped that this plausible, efficient

framework will enable new generations of cogni-

tive models that allow predictions from syntactic

and (latent) semantic factors to naturally interact

in comprehension.
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