Ling 5801: Lecture Notes 12 Probability

Weights for our parsers and other models are well defined as probabilities.
Probability in this view is a subjective measure of belief about some uncertain event (e.g. sentence).

Specifically, a probability p is a belief about a set of outcomes o in a sample space O.
Sample space: set of mutually exclusive possible propositions (e.g. FSA states / PDA store-states)
Belief: given an infinite number of trials of O, the set of o would happen p of the time.

Contents

12.1 Probability and probability spaces [Kolmogorov, 1933] 1
12.2 Probability notation . 2
12.3 Estimating probabilities from data . 3

12.1 Probability and probability spaces [Kolmogorov, 1933]

Probability is defined over a measure space $\langle O, \mathcal{E}, \mathrm{P}\rangle$ where the measure P (probability) sums to one.
This probability measure space $\langle O, \mathcal{E}, \mathrm{P}\rangle$ consists of:

1. a sample space O - a non-empty set of outcomes;
2. an event space ('sigma-algebra') $\mathcal{E} \subseteq 2^{O}$ - a set of events in the power set of O such that:
(a) \mathcal{E} contains $O: O \in \mathcal{E}$,
(b) \mathcal{E} is closed under complementation: $\forall_{A \in \mathcal{E}} O-A \in \mathcal{E}$,
(c) \mathcal{E} is closed under countable union: $\forall_{A_{1} . . A_{\infty} \in \mathcal{E}} \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{E}$
(this set of events will serve as the domain of our probability function);
3. a probability measure $\mathrm{P}: \mathcal{E} \rightarrow \mathbb{R}_{0}^{\infty}$ - a function from events to non-negative reals such that:
(a) the P measure is countably additive: $\forall_{A_{1} . . A_{\infty} \in \mathcal{E} \text { s.t. } \forall_{i, j}} A_{i} \cap A_{j}=\emptyset \quad \mathrm{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathrm{P}\left(A_{i}\right)$,
(b) the P measure of entire space is one: $\mathrm{P}(O)=1$.

These are the Kolmogorov axioms of probability.

This characterization is helpful because it unifies probability spaces that may seem very different:

1. discrete spaces - e.g. a coin:
$\langle\underbrace{\langle\{\mathrm{H}, \mathrm{T}\}}_{O}, \underbrace{\{\emptyset,\{\mathrm{H}\},\{\mathrm{T}\},\{\mathrm{H}, \mathrm{T}\}\}}_{\mathcal{E}}, \underbrace{\{\langle\emptyset, 0\rangle,\langle\{\mathrm{H}\}, .5\rangle,\langle\{\mathrm{T}\}, .5\rangle,\langle\{\mathrm{H}, \mathrm{T}\}, 1\rangle\}\rangle}_{\mathrm{P}}$
2. continuous spaces - e.g. a dart (here $2^{\mathbb{R}^{2}}$ is a Borel algebra: a set of all open subsets of \mathbb{R}^{2}):

(events must be open sets/ranges of outcomes because point outcomes have zero probability)
3. joint spaces using Cartesian products of sample spaces - e.g. two coins $(\{\mathrm{H}, \mathrm{T}\} \times\{\mathrm{H}, \mathrm{T}\})$:

This axiomatization entails, for any events (sets of outcomes) $A, B \in \mathcal{E}$:

1. $\mathrm{P}(A) \in \mathbb{R}_{0}^{1}$
2. $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$

Minimal events - those used as base cases in the closure operations - are called atomic events. Atomic events in continuous models can have any size you want (like even/odd die), but not points.

12.2 Probability notation

Though probabilities are defined over sets of outcomes, we often write them using propositions.
For example, if $O=X \times Y$ and therefore $\forall_{o \in O} o=\left\langle x_{o}, y_{o}\right\rangle$:

$$
\begin{array}{llll}
\mathrm{P}(x) & =\mathrm{P}(X=x) & =\mathrm{P}\left(\left\{o \mid o \in O \wedge x_{o}=x\right\}\right) & \text { (allow any value for } y_{o} \text { component) } \\
\mathrm{P}(x \wedge y)=\mathrm{P}(X=x \wedge Y=y) & =\mathrm{P}\left(\left\{o \mid o \in O \wedge x_{o}=x \wedge y_{o}=y\right\}\right) & \\
\mathrm{P}(\neg x) & =\mathrm{P}(X \neq x) & =\mathrm{P}\left(\left\{o \mid o \in O \wedge x_{o} \neq x\right\}\right)
\end{array}
$$

Random variables are functions from outcomes x_{o}, y_{o} to values, e.g. distance of point to origin. Often we will simply use Cartesian factors of a joint sample space (X, Y) as random variables.

Distributions are sometimes written as probabilities over (all values of) random variables:

$$
\mathrm{P}(X)=\mathrm{P}(Y) \quad \Leftrightarrow \quad \forall_{x \in X \cup Y} \mathrm{P}(X=x)=\mathrm{P}(Y=x) .
$$

We can also define conditional probabilities as ratios of these measures: $\mathrm{P}(x \mid y)=\frac{\mathrm{P}(x \wedge y)}{\mathrm{P}(y)}$. (It's the probability of the joint $\left\{o \mid x_{o}=x\right\} \cap\left\{o \mid y_{o}=y\right\}$ over the probability of the condition $\left\{o \mid y_{o}=y\right\}$.) For example, if we have $O=\{1,2,3,4,5,6\}$, then $\mathrm{P}(o$ is even $\mid o \leq 4)=\frac{\mathrm{P}(o \text { is even } \wedge o \leq 4)}{\mathrm{P}(o \leq 4)}=\frac{2}{4}=\frac{1}{2}$.

12.3 Estimating probabilities from data

We can estimate these probabilities from data!

First, define a frequency space $\langle O, \mathcal{E}, \mathrm{~F}\rangle$ - same measure space with no $\mathrm{P}(O)=1$ constraint.
We can define a frequency space using counts of some set of atomic events in some training data.
For example a model of sentence expansions ($O=$ Root \times LeftChild \times RightChild in a tree):

```
< {\langleV,N,V-aN\rangle, \langleV,N,V-gN\rangle, \langleV,R-aN,V\rangle, \langleS,V,R-aN\rangle, . .},
    {\emptyset, {\langle\mathbf{V,N,V-aN}\rangle}, {\langleV,N,V-gN\rangle}, {\langleV,R-aN,V\rangle}, {\langle\mathbf{S,V,R-aN}\rangle}, . .}
    {\langle\emptyset,0\rangle, <{\langle\mathbf{V,N,V-aN}\rangle},2\rangle, \langle{\langle\mathbf{V,N,V-gN}\rangle},1\rangle, <{\langle\mathbf{V,R-aN,V}\},0\rangle, \langle{\langle\mathbf{S},\mathbf{V},\mathbf{R}-\mathbf{aN}\rangle}, 2\rangle,\ldots}\rangle
```

(Counts for larger sets are simply sums, according to axiom 3a.)

We can now define a very simple probability model (probability space) based on these counts:

$$
\mathrm{P}(A)=\frac{\mathrm{F}(A)}{\mathrm{F}(O)}
$$

```
< {\langle\mathbf{V,N,V-aN\rangle, \langleV,N,V-gN\rangle, \langleV,R-aN,V\rangle, \langleS,V,R-aN\rangle, . .},}
{\emptyset,{\langle\mathbf{V,N,V}\mathbf{-aN}\rangle},{\langle\mathbf{V,N,V-gN}\rangle},{\langle\mathbf{V},\mathbf{R}-\mathbf{aN},\mathbf{V}\rangle}, {\langle\mathbf{S,V,R-aN}\rangle},\ldots}
{\langle0, 0\rangle, <{\langle\mathbf{V,N,V-aN}\rangle},.4\rangle, \langle{\langle\mathbf{V,N},\mathbf{V}-\mathbf{gN}\rangle},.2\rangle, \langle{\langle\mathbf{V},\mathbf{R}-\mathbf{aN},\mathbf{V}\rangle},0\rangle, \langle{\langle\mathbf{S},\mathbf{V},\mathbf{R}-\mathbf{aN}\rangle}, .4\rangle,\ldots}\rangle
```

(Counts for larger sets are simply sums, according to axiom 3a.)

This is called relative frequency estimation.

Probabilities of grammar rule expansions are more commonly notated:
$\mathrm{P}(c \rightarrow d e \mid c) \quad$ probability speaker decided to expand c into d followed by e
It is a branching process model that assigns probability to any tree / sentence
These are/were widely used in computational linguistics.

References

[Kolmogorov, 1933] Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer. Second English Edition, Foundations of Probability 1950, published by Chelsea, New York.

