
Ling 5801: Lecture Notes 12
Probability

Weights for our parsers and other models are well defined as probabilities.

Probability in this view is a subjective measure of belief about some uncertain event (e.g. sentence).

Specifically, a probability p is a belief about a set of outcomes o in a sample space O.

Sample space: set of mutually exclusive possible propositions (e.g. FSA states / PDA store-states)

Belief: given an infinite number of trials of O, the set of o would happen p of the time.
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12.1 Probability and probability spaces [Kolmogorov, 1933]

Probability is defined over a measure space 〈O,E,P〉 where the measure P (probability) sums to one.

This probability measure space 〈O,E,P〉 consists of:

1. a sample space O – a non-empty set of outcomes;

2. an event space (‘sigma-algebra’) E ⊆ 2O – a set of events in the power set of O such that:

(a) E contains O: O ∈ E,

(b) E is closed under complementation: ∀A∈E O−A ∈ E,

(c) E is closed under countable union: ∀A1..A∞∈E
⋃∞

i=1 Ai ∈ E

(this set of events will serve as the domain of our probability function);

3. a probability measure P : E → R∞0 – a function from events to non-negative reals such that:

(a) the P measure is countably additive: ∀A1..A∞∈E s.t. ∀i, j Ai∩A j=∅ P(
⋃∞

i=1 Ai) =
∑∞

i=1 P(Ai),

(b) the P measure of entire space is one: P(O) = 1.

These are the Kolmogorov axioms of probability.

This characterization is helpful because it unifies probability spaces that may seem very different:
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1. discrete spaces – e.g. a coin:

〈{H,T}︸︷︷︸
O

, {∅, {H}, {T}, {H,T}}︸                 ︷︷                 ︸
E

, {〈∅, 0〉, 〈{H}, .5〉, 〈{T}, .5〉, 〈{H,T}, 1〉}︸                                          ︷︷                                          ︸
P

〉

2. continuous spaces – e.g. a dart (here 2R
2

is a Borel algebra: a set of all open subsets of R2):

〈 R2︸︷︷︸
O

, 2R
2︸︷︷︸
E

, {〈R, p〉 | R ∈ 2R
2
, p =

!
A∈R
N0,1(xA, yA) dA}︸                                                   ︷︷                                                   ︸

P

〉

(events must be open sets/ranges of outcomes because point outcomes have zero probability)

3. joint spaces using Cartesian products of sample spaces – e.g. two coins ({H,T} × {H,T}):

〈{HH,HT,TH,TT}︸                 ︷︷                 ︸
O

, {∅, {HH}, . . . , {HH,HT,TH,TT}}︸                                     ︷︷                                     ︸
E

, {〈∅, 0〉, 〈{HH}, .25〉, . . . , 〈{HH,HT,TH,TT}, 1〉}︸                                                        ︷︷                                                        ︸
P

〉

This axiomatization entails, for any events (sets of outcomes) A, B ∈ E:

1. P(A) ∈ R1
0

2. P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

A B

Minimal events – those used as base cases in the closure operations – are called atomic events.

Atomic events in continuous models can have any size you want (like even/odd die), but not points.

12.2 Probability notation

Though probabilities are defined over sets of outcomes, we often write them using propositions.

For example, if O = X × Y and therefore ∀o∈O o = 〈xo, yo〉:

P(x) = P(X=x) = P( {o | o∈O ∧ xo=x} ) (allow any value for yo component)
P(x ∧ y) = P(X=x ∧ Y=y) = P( {o | o∈O ∧ xo=x ∧ yo=y} )
P(¬x) = P(X,x) = P( {o | o∈O ∧ xo,x} )

Random variables are functions from outcomes xo, yo to values, e.g. distance of point to origin.

Often we will simply use Cartesian factors of a joint sample space (X,Y) as random variables.
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Distributions are sometimes written as probabilities over (all values of) random variables:

P(X) = P(Y) ⇔ ∀x∈X∪Y P(X=x) = P(Y=x).

We can also define conditional probabilities as ratios of these measures: P(x | y) =
P(x∧y)

P(y) .

(It’s the probability of the joint {o | xo=x}∩{o | yo=y} over the probability of the condition {o | yo=y}.)

For example, if we have O = {1, 2, 3, 4, 5, 6}, then P(o is even | o ≤ 4) =
P(o is even ∧ o≤4)

P(o≤4) = 2
4 = 1

2 .

o ≤ 4 o is even

1

3
2

4

6

5

12.3 Estimating probabilities from data

We can estimate these probabilities from data!

First, define a frequency space 〈O,E,F〉 – same measure space with no P(O) = 1 constraint.

We can define a frequency space using counts of some set of atomic events in some training data.

For example a model of sentence expansions (O = Root × LeftChild × RightChild in a tree):

〈 {〈V,N,V-aN〉, 〈V,N,V-gN〉, 〈V,R-aN,V〉, 〈S,V,R-aN〉, . . . },
{∅, {〈V,N,V-aN〉}, {〈V,N,V-gN〉}, {〈V,R-aN,V〉}, {〈S,V,R-aN〉}, . . . }
{〈∅, 0〉, 〈{〈V,N,V-aN〉}, 2〉, 〈{〈V,N,V-gN〉}, 1〉, 〈{〈V,R-aN,V〉}, 0〉, 〈{〈S,V,R-aN〉}, 2〉, . . . } 〉

(Counts for larger sets are simply sums, according to axiom 3a.)

We can now define a very simple probability model (probability space) based on these counts:

P(A) =
F(A)
F(O)

〈 {〈V,N,V-aN〉, 〈V,N,V-gN〉, 〈V,R-aN,V〉, 〈S,V,R-aN〉, . . . },
{∅, {〈V,N,V-aN〉}, {〈V,N,V-gN〉}, {〈V,R-aN,V〉}, {〈S,V,R-aN〉}, . . . }
{〈∅, 0〉, 〈{〈V,N,V-aN〉}, .4〉, 〈{〈V,N,V-gN〉}, .2〉, 〈{〈V,R-aN,V〉}, 0〉, 〈{〈S,V,R-aN〉}, .4〉, . . . } 〉

(Counts for larger sets are simply sums, according to axiom 3a.)
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This is called relative frequency estimation.

Probabilities of grammar rule expansions are more commonly notated:

P(c→ d e | c) probability speaker decided to expand c into d followed by e

It is a branching process model that assigns probability to any tree / sentence

These are/were widely used in computational linguistics.
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