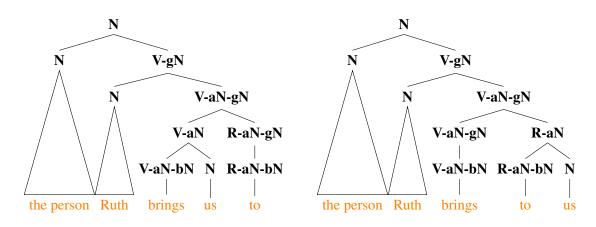
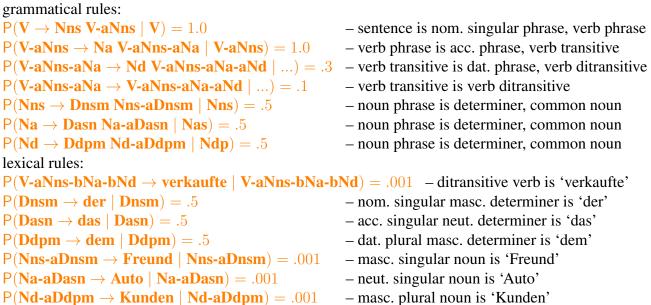
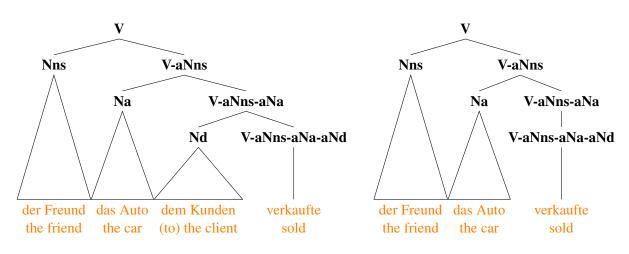

LING5702: Problem Set 5


Due via Carmen dropbox at 11:59 PM 4/3.

1. Surprisal has been used to explain 'filled gap' effects, in which gaps appear to be filled as quickly as possible. Using the following grammatical and lexical rule probabilities:

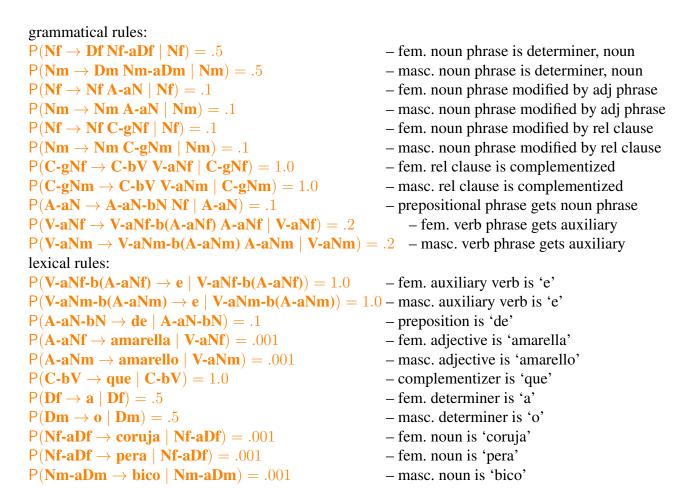
 $P(N \rightarrow D N - aD | N) = .5$ - noun phrase is determiner, common noun $P(N \rightarrow N V g N \mid N) = .1$ - noun phrase is noun phrase, relative clause $P(V-gN \rightarrow N V-aN-gN \mid V-gN) = 1.0$ - relative clause is noun phrase, gapped verb phrase $P(V-aN-gN \rightarrow V-aN-gN R-aN \mid ...) = .15$ – gapped verb phrase is verb phrase, gapped adv phrase $P(V-aN-gN \rightarrow V-aN R-aN-gN \mid ...) = .01$ - gapped verb phrase is gapped verb phrase, adv phrase $P(V-aN \rightarrow V-aN-bN N \mid V-aN) = .5$ - verb phrase is trans verb, noun phrase $P(V-aN-gN \rightarrow V-aN-bN | V-aN-gN) = 1.0$ – gapped verb phrase is transitive verb $P(\mathbf{R}-\mathbf{aN}-\mathbf{gN} \rightarrow \mathbf{R}-\mathbf{aN}-\mathbf{bN} | \mathbf{R}-\mathbf{aN}-\mathbf{gN}) = 1.0 - \text{gapped adverbial phrase is preposition}$ $P(\mathbf{R}-\mathbf{aN} \rightarrow \mathbf{R}-\mathbf{aN}-\mathbf{bN} \mathbf{N} \mid \mathbf{R}-\mathbf{aN}) = .5$ - adv phrase is preposition, noun phrase lexical rules: $P(V-aN-bN \rightarrow brings | V-aN-bN) = .001$ - transitive verb is 'brings' $\mathsf{P}(\mathbf{D} \to \mathbf{the} \mid \mathbf{D}) = .5$ - determiner is 'the' $P(N-aD \rightarrow person \mid N-aD) = .001$ - common noun is 'person' $P(N \rightarrow Ruth \mid N) = .001$ - noun phrase is 'Ruth' $P(N \rightarrow us \mid N) = .001$ - noun phrase is 'us' $P(\mathbf{R}-\mathbf{aN}-\mathbf{bN} \rightarrow \mathbf{to} \mid \mathbf{R}-\mathbf{aN}-\mathbf{bN}) = .1$ - an adverbial preposition is 'to'

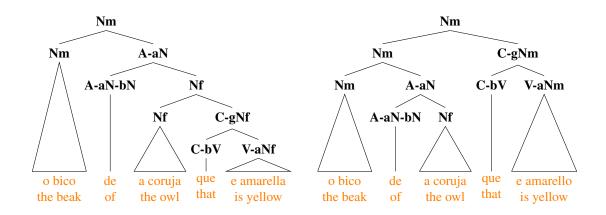

and the following trees:


please answer:

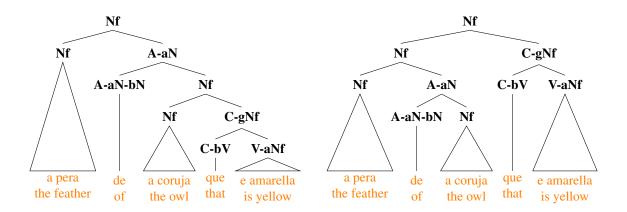
- (a) [3 pts] What is the probability of the first tree according to the grammar and lexicon?
- (b) [3 pts] What is the probability of the second tree according to the grammar and lexicon?
- (c) [4 pts] What fraction of probability remains after the word 'us' in the first sentence?(You may limit your consideration to just the above two trees.)

2. Surprisal has also been used to explain observations of 'anti-locality' in case-marked languages, where verbs following longer lists of noun phrases are facilitated (processed faster). Using the following grammatical and lexical rule probabilities:


and the following trees:


please answer:

- (a) [3 pts] What is the probability of the first tree according to the grammar and lexicon?
- (b) [3 pts] What is the probability of the second tree according to the grammar and lexicon?
- (c) [2 pts] What fraction of probability remains after 'verkaufte' in the first sentence? (You may limit your consideration to just the above two trees.)
- (d) [2 pts] What fraction of probability remains after 'verkaufte' in the second sentence? (You may limit your consideration to just the above two trees.) (Note that the first tree contains all words before 'verkaufte' in the second sentence.)


3. Surprisal has also been used to explain 'facilitation due to ambiguity,' in which globally syntactically ambiguous sentences are read more quickly than locally syntactically ambiguous sentences. Using the following grammatical and lexical rule probabilities:

and the following 'beak' trees, with different final adjectives to match the nouns' genders:

and the following 'feather' trees, with the same final adjective matching both nouns' gender:

please answer:

- (a) [3 pts] What is the probability of the first 'beak' tree according to the above rules?
- (b) [3 pts] What is the probability of the second 'beak' tree according to the above rules?
- (c) [3 pts] What is the probability of the first 'feather' tree according to the above rules?
- (d) [3 pts] What is the probability of the second 'feather' tree according to the above rules?
- (e) [2 pts] What fraction of probability remains after 'amarella' in the first 'beak' sentence? (You may limit your consideration to just the above two trees.)
- (f) [2 pts] What fraction of probability remains after 'amarella' in the 'feather' sentence? (You may limit your consideration to just the above two trees.)