LING5702: Lecture Notes 22 Neural grammar induction experiments

Contents

22.1	Neural inducer (Jin et al., 2021)	1
22.2	Character model	2
22.3	Results on child-directed speech transcripts: character model is better	2
22.4	Results on newswire data: character model is generally better	3

22.1 Neural inducer (Jin et al., 2021)

We get better results with a neural inducer, which directly optimizes probability of sentences σ :

$$\mathbf{W}^{(t)} = \mathbf{W}^{(t-1)} - \frac{\partial}{\partial \mathbf{W}^{(t-1)}} \sum_{\sigma \in \mathcal{D}} -\ln \mathsf{P}(\sigma)$$

Sentence probability comes from rule probabilities, as before:

$$\mathsf{P}(\sigma) = \sum_{\tau \text{ for } \sigma} \prod_{\eta \in \tau \text{ s.t. } c_{\eta} \to c_{\eta 1}} \mathsf{P}(c_{\eta} \to c_{\eta 1} \ c_{\eta 2} \mid c_{\eta}) \cdot \prod_{\eta \in \tau \text{ s.t. } c_{\eta} \to w_{\eta}} \mathsf{P}(c_{\eta} \to w_{\eta} \mid c_{\eta})$$

Rule probabilities rely on a terminal/nonterminal decision:

$$P(\text{Stop}=s \mid c_{\eta}) = \underbrace{\text{SoftMax}}_{s \in \{0,1\}} (\mathbf{W}_{\text{stop}} \underbrace{\mathbf{E} \, \delta_{\mathbf{c}_{\eta}}})$$

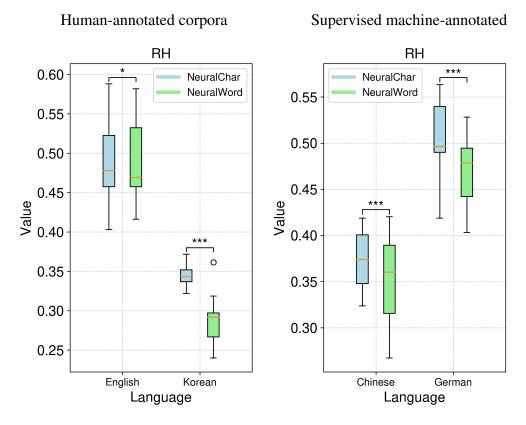
The non-terminal and terminal probabilities are also estimated by neural networks:

1. If **non-terminal**, we use a neural decision given the expanded category:

$$P(c_{\eta} \rightarrow c_{\eta 1} \ c_{\eta 2} \ | \ c_{\eta}) = P(\text{Stop=0} \ | \ c_{\eta}) \cdot \underbrace{\text{SoftMax}}_{c_{\eta 1}, c_{\eta 2} \in C \times C}(\mathbf{W}_{\text{nont}} \ \widetilde{\mathbf{E}} \ \delta_{c_{\eta}})$$

2. If **terminal**, we use a different neural decision given the expanded category:

$$P(c_{\eta} \to w_{\eta} \mid c_{\eta}) = P(\text{Stop=1} \mid c_{\eta}) \cdot \underbrace{\text{SoftMax}}_{w_{\eta} \in W} (\mathbf{W}_{\text{term}} \ \mathbf{E} \ \delta_{c_{\eta}})$$


22.2 Character model

Alternatively, we try a **recurrent neural character model** (an 'LSTM'):

$$\begin{split} \mathsf{P}(c_{\eta} \to w_{\eta} \mid c_{\eta}) &= \mathsf{P}(\mathsf{Stop=1} \mid c_{\eta}) \cdot \overbrace{\prod_{\ell_{i} \in \{\ell_{1}, \dots, \ell_{n}\}} \mathsf{P}(\ell_{i} \mid c_{\eta}, \ell_{1}, \dots, \ell_{i-1})}^{\mathsf{prob. of each letter comes from LSTM}} \\ \mathsf{P}(\ell_{i} \mid c_{\eta}, \ell_{1}, \dots, \ell_{i-1}) &= \underbrace{\mathsf{SoftMax}}_{\ell_{i} \in \{\mathsf{a}, \mathsf{b}, \dots\}} (\mathbf{W}_{\mathsf{char}} \, \mathbf{h}_{i, B, c_{\eta}}) \\ \mathbf{h}_{i, b, c_{\eta}}, \mathbf{c}_{i, b, c_{\eta}} &= \mathsf{LSTM}(\mathbf{h}_{i, b-1, c_{\eta}}, \mathbf{h}_{i-1, b, c_{\eta}}, \mathbf{c}_{i-1, b, c_{\eta}}) \\ \mathbf{h}_{0, b, c_{\eta}}, \mathbf{c}_{0, b, c_{\eta}} &= \mathsf{ReLU}(\mathbf{W}_{b, \mathsf{term}} \, \mathbf{E} \, \delta_{c_{\eta}}), \mathbf{0} \\ &= \mathsf{category \, embedding} \end{split}$$

LSTMs (Long Short-Term Memories) have hidden units $\mathbf{h}_{i,b,c_{\eta}}$ and durable memory cells $\mathbf{c}_{i,b,c_{\eta}}$. This lets the model learn patterns of character sequences for each category (e.g. verbs end in *-ing*).

22.3 Results on child-directed speech transcripts: character model is better

Data: MacWhinney (2000).

22.4 Results on newswire data: character model is generally better

	Models / RH		Individual languages A						Avg			
	Wiodels / Kill	Ar	Zh	En	Fr	De	Не	Ja	Ko	Pl	Vi	8
DIMI (Ji	n et al., 2018)	16.5	12.4	23.4	16.8	10.3	14.9	23.5	7.1	6.3	8.1	13.9
Compound (Kii	m et al., 2019)	21.1	21.2	36.8	37.7	41.4	23.5	15.2	5.6	35.1	15.8	25.3
Compound-v (Kin	m et al., 2019)	16.9	22.6	35.0	39.9	39.4	29.1	13.1	7.0	33.0	24.0	26.0
L-PCFG (Zh	u et al., 2020)	24.4	19.4	15.0	18.2	28.3	17.0	30.1	10.2	17.4	10.2	19.0
NeurWord (Ji	n et al., 2021)	23.0	20.8	29.7	29.8	33.8	21.6	29.8	11.7	22.0	15.1	23.7
Flow (Ji	n et al., 2019)	25.4	18.7	21.6	25.3	29.7	25.4	24.4	15.0	31.0		24.1
NeurChar (Ji	n et al., 2021)	29.1	23.9	33.4	40.7	39.3	29.5	40.2	16.3	21.0	12.8	28.5
	Models / F1				Indiv	idual	lang	uages	S			Ανσ
	Models / F1		Zh						s Ko	Pl	Vi	Avg
DIMI (Ji	Models / F1	Ar	Zh	En	Fr	De	Не	Ja	Ko		Vi	
`	n et al., 2018)	Ar 35.3	Zh 36.6	En 50.6	Fr 39.6	De 36.4	He 45.4	Ja 36.2	Ko 26.5	43.2	Vi 42.7	39.3
Compound (Kin	n et al., 2018) n et al., 2019)	Ar 35.3 32.4	Zh 36.6 34.2	En 50.6 51.7	Fr 39.6 48.2	De 36.4 49.7	He 45.4 40.5	Ja 36.2 22.9	Ko 26.5 19.1	43.2 50.1	Vi 42.7 34.3	39.3 38.3
Compound (Kin Compound-v (Kin	n et al., 2018) n et al., 2019) n et al., 2019)	Ar 35.3 32.4 27.6	Zh 36.6 34.2 37.4	En 50.6 51.7 50.9	Fr 39.6 48.2 49.6	De 36.4 49.7 47.9	He 45.4 40.5 49.2	Ja 36.2 22.9 21.6	Ko 26.5 19.1 20.7	43.2 50.1 47.2	Vi 42.7 34.3 38.3	39.3 38.3 39.1
Compound (Kin Compound-v (Kin	n et al., 2018) n et al., 2019) n et al., 2019) u et al., 2020)	Ar 35.3 32.4 27.6 45.0	Zh 36.6 34.2 37.4 46.2	En 50.6 51.7 50.9 36.2	Fr 39.6 48.2 49.6 34.4	De 36.4 49.7 47.9 46.8	He 45.4 40.5 49.2 38.4	Ja 36.2 22.9 21.6 45.2	Ko 26.5 19.1 20.7 30.0	43.2 50.1 47.2 32.1	Vi 42.7 34.3 38.3 27.3	39.3 38.3 39.1 38.2
Compound (Kin Compound-v (Kin L-PCFG (Zh NeurWord (Ji	n et al., 2018) n et al., 2019) n et al., 2019) u et al., 2020)	Ar 35.3 32.4 27.6 45.0 36.9	Zh 36.6 34.2 37.4 46.2 41.3	En 50.6 51.7 50.9 36.2 44.4	Fr 39.6 48.2 49.6 34.4 41.5	De 36.4 49.7 47.9 46.8 44.4	He 45.4 40.5 49.2 38.4 40.0	Ja 36.2 22.9 21.6 45.2 42.4	Ko 26.5 19.1 20.7 30.0 23.3	43.2 50.1 47.2 32.1 35.2	Vi 42.7 34.3 38.3 27.3 37.5	39.3 38.3 39.1 38.2 38.7

References

- Jin, L., Doshi-Velez, F., Miller, T., Schuler, W., & Schwartz, L. (2018). Depth-bounding is effective: Improvements and evaluation of unsupervised PCFG induction. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing* (pp. 2721–2731).
- Jin, L., Doshi-Velez, F., Miller, T., Schwartz, L., & Schuler, W. (2019). Unsupervised learning of PCFGs with normalizing flow. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics* (pp. 2442–2452).
- Jin, L., Oh, B.-D., & Schuler, W. (2021). Character-based PCFG induction for modeling the syntactic acquisition of morphologically rich languages. In *Findings of the Association for Computational Linguistics: EMNLP 2021* (pp. 4367–4378). Punta Cana, Dominican Republic: Association for Computational Linguistics.
- Kim, Y., Dyer, C., & Rush, A. (2019). Compound probabilistic context-free grammars for grammar induction. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics* (pp. 2369–2385).
- MacWhinney, B. (2000). *The CHILDES project: Tools for analyzing talk*. Mahwah, NJ: Lawrence Elrbaum Associates, third edition.

Zhu, H., Bisk, Y., & Neubig, G. (2020). The return of lexical dependencies: Neural lexicalized PCFGs. *Transactions of the Association for Computational Linguistics*, 8, 647–661.