LING5702: Lecture Notes 1 Introduction and Background

Contents

$$
\text { 1.1 What is this course about? . } 1
$$

1.2 Background: some math notation (in case you don’t know) 2
1.3 Background: probability and probability spaces [Kolmogorov, 1933] 3

1.1 What is this course about?

This course will cover fundamental questions about what language is.
This course differs from other psychology courses because:

- it covers language.
- it involves a lot of formal (i.e. mathematical) modeling-language is inherently formal!

This course differs from other linguistics courses because:

- it focuses on linguistic 'performance' rather than linguistic 'competence' Chomsky, 1965].
- competence: mental representations of linguistic knowledge (rules to combine signs)
- performance: how language is actually used (regularities in how speech errors happen)
- it models phenomena at an 'algorithmic' rather than 'computational' level [Marr, 1982].
- computational/functional: model the task a behavior does, e.g. find spoken phrases.
- algorithmic/representational: model processes/structures behaviors use, e.g. memory.
- implementational: model physical implementation of behaviors, e.g. neural firing.

The course therefore covers some of the same material as other linguistic courses, but differently.
The course is organized into three parts:

1. background (what we will assume about how the brain works):

- neural firing, mental states, cued associations, complex ideas

2. the processes of language:

- decoding complex signs into complex ideas
- identifying words and phrases and associating them with meanings
- encoding complex ideas into complex signs
- turning meanings back into words and phrases

3. acquisition (how babies learn language):

- learning speech sounds
- learning words and meanings
- learning to encode and decode complex ideas

1.2 Background: some math notation (in case you don't know)

Set notation, involving sets S, S^{\prime} and entities $x, x^{\prime}, x^{\prime \prime}, x_{1}, x_{2}, x_{3}, \ldots$:

pair	$\left\langle x_{1}, x_{2}\right\rangle$
tuple	$\left\langle x_{1}, x_{2}, x_{3}, \ldots\right\rangle$
set	$S=\{x \mid \ldots\}$ e.g. $\left\{x_{1}, x_{2}, x_{3}\right\}$
empty/null set	\emptyset or $\}$
element	$x \in S$ e.g. $x_{2} \in\left\{x_{1}, x_{2}\right\}, x_{3} \notin\left\{x_{1}, x_{2}\right\}$
subset (or equal)	$S \subset S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\} \subset\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{1}, x_{2}\right\} \subseteq\left\{x_{1}, x_{2}\right\}$
union	$S \cup S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\} \cup\left\{x_{2}, x_{3}\right\}=\left\{x_{1}, x_{2}, x_{3}\right\}$
intersection	$S \cap S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\} \cap\left\{x_{2}, x_{3}\right\}=\left\{x_{2}\right\}$
exclusion or complementation	$S-S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\}-\left\{x_{2}, x_{3}\right\}=\left\{x_{1}\right\}$
Cartesian product	$S \times S^{\prime}$ e.g. $\left\{x_{1}, x_{2}\right\} \times\left\{x_{3}, x_{4}\right\}=\left\{\left\langle x_{1}, x_{3}\right\rangle,\left\langle x_{1}, x_{4}\right\rangle,\left\langle x_{2}, x_{3}\right\rangle,\left\langle x_{2}, x_{4}\right\rangle\right\}$
power set	$\mathcal{P}(S)$ or 2^{S} e.g. $\mathcal{P}\left(\left\{x_{1}, x_{2}\right\}\right)=\left\{\emptyset,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}$
relation	$R \subseteq S \times S^{\prime}=\left\{\left\langle x, x^{\prime}\right\rangle \mid \ldots\right\}$ e.g. $R=\left\{\left\langle x_{1}, x_{3}\right\rangle,\left\langle x_{2}, x_{3}\right\rangle,\left\langle x_{2}, x_{4}\right\rangle\right\}$
function	$F: S \rightarrow S^{\prime} \subseteq S \times S^{\prime}$ s.t. if $\left\langle x, x^{\prime}\right\rangle,\left\langle x, x^{\prime \prime}\right\rangle \in F$ then $x^{\prime}=x^{\prime \prime}$
cardinality	$\|S\|=$ number of elements in S
real numbers	$\mathbb{R}:$ the uncountably infinite set of real numbers
real ranges	$\mathbb{R}_{m}^{n}:$ the real numbers between m and n (inclusive)
real tuples	$\mathbb{R}^{n}:$ the uncountably infinite set of n-tuples of reals

First-order logic notation, involving propositions $p, p^{\prime}-$ e.g. that $1<2$ (true) or $1=2$ (false):

conjunction	$p \wedge p^{\prime}$ or p, p^{\prime} e.g. $1<2 \wedge 2<3$ or $1<2,2<3$
disjunction	$p \vee p^{\prime}$ e.g. $1<2 \vee 1>2$
negation	$\neg p$ or $‘$, e.g. $\neg 1=2$ or $1 \neq 2$
implication	$p \rightarrow p^{\prime}$ (equivalent to $\neg p \vee p^{\prime}$) e.g. 3 is prime $\rightarrow 3$ is odd
existential quantifier	$\exists_{x \in S} \ldots x \ldots:$ disjunction over all x of $\ldots x \ldots$
universal quantifier	$\forall_{x \in S} \ldots x \ldots:$ conjunction over all x of $\ldots x \ldots$

Limit notation, involving sets S and entities x :

limit union	$\bigcup_{x \in S} \ldots x \ldots:$	union over all x of $\ldots x \ldots$
limit intersection	$\bigcap_{x \in S} \ldots x \ldots:$	intersection over all x of $\ldots x \ldots$
limit sum	$\sum_{x \in S} \ldots x \ldots:$	sum over all x of $\ldots x \ldots$
limit product	$\prod_{x \in S} \ldots x \ldots:$ product over all x of $\ldots x \ldots$	
limit	$\lim _{x \rightarrow \infty} \ldots x \ldots:$	limit as x tends to infinity of $\ldots x \ldots$

1.3 Background: probability and probability spaces [Kolmogorov, 1933]

Probability is defined over a measure space $\langle O, \mathcal{E}, \mathrm{P}\rangle$ where the measure P (probability) sums to one.
This probability measure space $\langle O, \mathcal{E}, \mathrm{P}\rangle$ consists of:

1. a sample space O - a non-empty set of outcomes (e.g. the numbers on a die);
2. an event space ('sigma-algebra') $\mathcal{E} \subseteq 2^{O}$ - a set of events in the power set of O such that:
(a) \mathcal{E} contains $O: O \in \mathcal{E}$ (e.g. the event of rolling any number: $\{1,2,3,4,5,6\}$ is in \mathcal{E}),
(b) \mathcal{E} is closed under complementation: $\forall_{A \in \mathcal{E}} O-A \in \mathcal{E}$ (e.g. rolling no number: \emptyset is in \mathcal{E}),
(c) \mathcal{E} is closed under countable union: $\forall_{A_{1} . . A_{\infty} \in \mathcal{E}} \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{E}$ (if $\{1,2\}$ and $\{3\}$ then $\{1,2,3\}$) (this set of events will be the domain of our probability function - things with probability);
3. a probability measure $\mathrm{P}: \mathcal{E} \rightarrow \mathbb{R}_{0}^{\infty}$ - a function from events to non-negative reals such that:
(a) the P measure is countably additive: $\forall_{A_{1} . A_{\infty} \in \mathcal{E} \text { s.t. } \forall_{i, j} A_{i} \cap A_{j}=\emptyset} \mathrm{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathrm{P}\left(A_{i}\right)$,
(b) the P measure of entire space is one: $\mathrm{P}(O)=1$ (e.g. P (rolling any number) $=1$).

This characterization is helpful because it unifies probability spaces that may seem very different:

1. discrete spaces - e.g. a coin:

2. continuous spaces - e.g. a dart (here $2^{\mathbb{R}^{2}}$ is a Borel algebra: a set of all open subsets of \mathbb{R}^{2}):

(events must be open sets/ranges of outcomes because point outcomes have zero probability)
3. joint spaces using Cartesian products of sample spaces - e.g. two coins ($\{\mathrm{H}, \mathrm{T}\} \times\{\mathrm{H}, \mathrm{T}\}$):

This axiomatization entails, for any events $A, B \in \mathcal{E}$ (e.g. rolling an even number or less than 4):

1. $\mathrm{P}(A) \in \mathbb{R}_{0}^{1}$
2. $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$

Though probabilities are defined over sets of outcomes, we often write them using propositions.
For example, if $O=X \times Y$ (say, flipping a coin and rolling a die) and therefore $\forall_{o \in O} O=\left\langle x_{o}, y_{o}\right\rangle$:

$$
\begin{array}{llll}
\mathrm{P}(x) & =\mathrm{P}(X=x) & =\mathrm{P}\left(\left\{o \mid o \in O \wedge x_{o}=x\right\}\right) & \text { (allow any value for } y_{o} \text { component) } \\
\mathrm{P}(x \wedge y)=\mathrm{P}(X=x \wedge Y=y) & =\mathrm{P}\left(\left\{o \mid o \in O \wedge x_{o}=x \wedge y_{o}=y\right\}\right) & \\
\mathrm{P}(\neg x) & =\mathrm{P}(X \neq x) & =\mathrm{P}\left(\left\{o \mid o \in O \wedge x_{o} \neq x\right\}\right)
\end{array}
$$

Random variables D are functions from outcomes x_{o}, y_{o} to values (e.g. distance of point to origin).
Often we simply use the Cartesian factors of a joint sample space (X, Y) as random variables.

We can also define conditional probabilities as ratios of these measures: $\mathrm{P}(S \mid R)=\frac{\mathrm{P}(R \cap S)}{\mathrm{P}(R)}$. (It's the probability of the joint or intersection $R \cap S$ over the probability of the condition R.)
For example, if we have $O=\{1,2,3,4,5,6\}$, then $\mathrm{P}(o$ is even $\mid o \leq 4)=\frac{\mathrm{P}(o \text { is even } \wedge o \leq 4)}{\mathrm{P}(o \leq 4)}=\frac{2}{4}=\frac{1}{2}$.

Practice: notation
Using variables X and Y for two coin flips, each with outcomes H and T, write a probability equation expressing that a quarter of the time the first coin will come up heads and the second coin will come up tails.

Practice: probability calculation
Assuming two fair coins are tossed, each with a .5 probability of a heads outcome and a .5 probability of a tails outcome, what is the probability that at least one coin will come up heads?

References

[Chomsky, 1965] Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, Mass.: MIT Press.
[Kolmogorov, 1933] Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer. Second English Edition, Foundations of Probability 1950, published by Chelsea, New York.
[Marr, 1982] Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman and Company.

