Ling 5701: Lecture Notes 12 Semantic Surprisal

Previously we've looked at models of surprisal based on probabilistic context-free grammars.

- P(LexMatch, LexRule \| ...) - lexical match and lexical rule
- $P($ Word $\mid \ldots$) \quad - observed word
- $P($ GramMatch, GramRule | ...) - grammatical match and grammatical rule

But this model offers no continuity between phrases or clauses. For example, in:

- [s Many people like dogs] because [s big ones usually bark at strangers]
the word 'bark' should be unsurprising, because dogs tend to bark, but the PCFG just has 'ones.'

12.1 Semantic surprisal

Instead, calculate incremental probabilities as product of:

- P (Inheritance | ...) - inheritance: new referent, old referent, new bridging to old
- $P($ LexMatch, LexRule | ...) - lexical match and lexical rule (as before)
- P(Word | ...) - observed word (as before)
- P(GramMatch, GramRule | ...) - grammatical match and grammatical rule (as before)

Probabilities (e.g. for 'bark') now depend on contexts of referents, like 'first argument of BeingADog.'

12.2 Attention

Experimental probe words may be sensitive to distribution of Inheritance model:

- repeated name penalty (Gordon et al)
- MacDonald (break, not cookies)
- Glenberg (sweatshirt)

People also use (superposed) inference rules to simulate mental model:

- Zwaan (moment/year later)
- Bransford (turtles)

