LING4400: Lecture Notes 3
Propositional Logic

Contents

3.1 Basic propositional connectives [Boole, 1847
[3.2 Derived propositional connectives| Lo Lo oL

So far we looked at a general framework for logic based on entities, truth values and functions.

Today we’ll look at some functions that define a very basic kind of logic, just over truth values.

3.1 Basic propositional connectives [Boole, 1847]
1. One useful function is negation: Not or —.
It maps each truth value to the opposite truth value.
Here’s the type: (t,t).
And here’s the truth table:

input output
[Not]" =| False : True
True : False

So for example, if we have some propositions in our world model
False
Then we can negate them:

True
True

Here’s the derivation tree:

2. Another useful function is conjunction: And or A.
It maps truth values to functions that map other truth values to still other truth values.

Here’s the type: (t, (t,t)).

And here’s the truth table:

input output

input output
False : | False : False
[And]Y = True : False

input output
True :| False : False
True : True

So for example, if we have some propositions in our world model

True

True
Then we can conjoin them:
True

Here’s the derivation tree:

Practice 3.1:

What is the interpretation of the expression ?

Above we assume function application is left-to-right associative, so it’s interpreted like:

True

This means a function in the output of another function acts like a two-argument function.

This is called a Curried function (named after Haskell Curry, who did it a lot).

These kinds of functions are also often written in between their arguments:
[p A ql" = [And p g1

For example:
True

This is called infix notation.

We can draw trees for expressions in infix notation using flattened rules:

For example:

Practice 3.2:

Draw a derivation tree showing types for the expression

3.2 Derived propositional connectives
From these basic propositional functions, we can derive two more useful functions:
1. We can derive disjunction (Or or v) as a negated conjunction of negated propositions:
[Or1" = [, A, Not (And (Not p) (Not ¢))1"
(In other words, it’s not true that neither of p and ¢ is true. At least one is true.)

This is equivalent to a (t, (t,t)) function with the following truth table:

input output

input output
False : | False : False
[Or¥ = True : True

input output
True : | False : True
True : True

2. We can derive implication (If or —) as a disjunction with the first proposition negated:
[[lf]]M = [[/lp:t /lq:[Or (NOt p) q]]M
(In other words, if p is true then g is true; if p is false then ¢ doesn’t matter.)

This is equivalent to a (t, (t,t)) function with the following truth table:

input output

input output
False : | False : True
[= True : True

input output
True : | False : False
True : True

These are vacuously true for false premises in the sense that rules can be tacitly obeyed:

)

These functions are also often written using infix notation:

[pvql” =[Orpql™
[p - qI™ = [If p q1™

For example:

True
True

Again, we can draw trees for expressions in infix notation using flattened rules:

t t
t \% t t —> t

For example:

Logic with just these four functions is called propositional logic.

Practice 3.3:

Write an expression to produce the following truth table using conjunction and negation:

input output

input output
False : | False : False
True : True

input output
True : | False : False
True : False

References

[Boole, 1847] Boole, G. (1847). The mathematical analysis of logic: being an essay towards a
calculus of deductive reasoning. Cambridge: Macmillan, Barclay, & Macmillan.

	Basic propositional connectives boole1847
	Derived propositional connectives

