Ling 5801: Problem Set 5
Due via Carmen dropbox at 11:59 PM 11/14.

1. [10 pts.] Write an equation for a full joint distribution in terms of the following models:
 - θ_{SKF}, for a student knowing the fact that answers a question,
 - θ_{SRH}, for the student raising his or her hand,
 - θ_{SCA}, for the student correctly answering the question,

 with conditional dependencies as shown in the following network:

2. [10 pts.] Draw or describe a graphical representation of an extension of the above probability model, using random variables for:
 - student listening to lesson explaining fact
 - teacher asking question
 - student hearing question

 Justify each additional conditional dependency in a sentence (for example: ‘a student is more likely to raise his or her hand if he or she knows the answer’).

3. [10 pts.] PROGRAMMING: Write a program to read in models of language change over generations of speakers. Use the following format for component models of a grandparent speaker G, a parent speaker P (given grandparent), and a child speaker C (given parent) making use of the word ‘who’ as opposed to ‘whom’ in the position of an accusative filler (e.g. ‘who/whom did you invite?’):

 $G : \text{ who } = .1$
 $G : \text{ whom } = .9$

 $P \text{ who : who } = 1$
 $P \text{ who : whom } = 0$
 $P \text{ whom : who } = .2$
 $P \text{ whom : whom } = .8$

 ;
then use these models to calculate a conditional probability distribution table for $P(P|C)$, and print it in the following format:

- P_{givC} who : who = 0.4375
- P_{givC} who : whom = 0.5625

4. [10 pts.] PROGRAMMING: Write a program to read in models for all variables R, W, and O in the ‘repeated trials’ model shown at the beginning of the lecture notes on sequence modeling, in the following format:

- $R : ohio = .5$
- $R : phil = .5$
- $W : /nek/ = .6$
- $W : /naek/ = .4$
- $O_{ohio} /nek/ : [nek] = 1$
- $O_{phil} /nek/ : [nek] = .667$
- $O_{phil} /nek/ : [naek] = .333$
- $O_{ohio} /naek/ : [naek] = 1$
- $O_{phil} /naek/ : [naek] = 1$

and an input sequence of any number of observations in the format:

- $I [naek] [nek] [naek] ..$

then print out a probability distribution for R given all of these input observations, in the following format (note: probabilities given observations should not necessarily match initial R model):

- $R_{givenIdata} : ohio = .4$
- $R_{givenIdata} : phil = .6$

Your program should be as short as possible. Hand in all inputs and outputs.