1. Operations in an algorithm

The syntax rules used in every program defines a tree.

For example:

```python
for x in X :
    print x
```

has the following tree:

```
⟨program⟩
  ⟨stmt-seq⟩
    ⟨delim-stmt⟩
      ⟨for⟩ ⟨num-expr⟩ in ⟨num-list-expr⟩ : NEWLINE ⟨suite⟩ ε
        ⟨num-var⟩ ⟨num-list-var⟩
          x X
          INDENT ⟨stmt-seq⟩ DEDENT
          ⟨delim-stmt⟩ ⟨stmt-seq⟩
            ⟨stmt⟩ NEWLINE ε
              print ⟨num-expr⟩
                x
```

In this tree, each *non-unary lexicalized* rule counts as an operation:

- ‘non-unary’ rules have more than one child
- ‘lexicalized’ rules contain at least one terminal symbol (other than epsilon, NEWLINE, INDENT, or DEDENT)

(or count first keyword of each rule: ‘if’, ‘for’, ‘=’, ‘+’, ‘[’, ...,)

Each operation takes some number of clock cycles to execute

Loops execute all operations under loop on *each iteration*!

(so time complexity of loops within loops grows exponentially with each loop)
2. Complexity: how efficient is a program/algorithn?

Time taken by an algorithm A can be measured in terms of complexity classes:

- linear: $A \in O(n)$
- quadratic: $A \in O(n^2)$
- cubic: $A \in O(n^3)$
- ... : $A \in O(g(n))$

Definition of (worst-case) complexity classes:

$A \in O(g(n))$ if and only if $\exists n_0, c \cdot \forall x_1..x_n . n > n_0 \rightarrow \tau(A(x_1..x_n)) \leq c \cdot g(n)$

where:

- n_0 is a point at which higher-order terms overtake lower-order terms in $g(n)$
- c is a constant time cost for the group of most deeply nested statements
- $x_1..x_n$ is an input sequence of observations of length n
- $\tau(A(x_1..x_n))$ is the time (in number of operations) required to execute A on $x_1..x_n$

In other words, an algorithm A is in class $O(g(n))$ if there is a length n_0 beyond which all input $x_1..x_n$ takes time within a constant c multiple of $g(n)$.

For example:

![Graph showing complexity classes](image)

What counts as input? Our FSArec has input X (n is the number of characters defining X)

Other terms? if algo is flexible, they count too (separately): q chars defining S, F, M

For loops, complexity (in statements executed) exponential on number of nested loops.

For example, our FSA recognizer:

```python
# initialize table of possible states at time step 0 using start states
V = {}
for q in Q:
    V[0,q] = S.get(q,False)

# for each possible state qP in V at time t-1, for each qP,x,q in M, add q
```
for t in range(1,len(Input)):
 for qP in Q:
 for q in Q:
 V[t,q] = V.get((t,q),False) or (V[t-1,qP] and M.get((qP,Input[t],q),False))

3. Correctness: does a program do what it should?
Correctness of an algorithm (abstraction of a program) depends on correctness of statements.
Most statements are straightforward.
But loops are more complex; usually proven by induction:

- define a loop invariant
- base case: demonstrate invariant satisfied at beginning of loop
- induction step: demonstrate invariant satisfied after each iteration if satisfied before
- demonstrate if invariant is satisfied at end, program is correct

For example, using our FSA implementation (prior to final state checking):

```python
# initialize table of possible states at time step 0 using start states
V = {}
for q in Q:
    V[0,q] = S.get(q,False)

# for each possible state qP in V at time t-1, for each qP,x,q in M, add q
for t in range(1,len(Input)):
    for qP in Q:
        for q in Q:
            V[t,q] = V.get((t,q),False) or (V[t-1,qP] and M.get((qP,Input[t],q),False))

We can prove correctness of the inner loop over q in the last nesting group, given t and qP:

- loop invariant:
  After each iteration, V shows states at or before q reachable from states at or before qP on input up to time t.
- base case:
  Before loop begins, V shows states reachable from sources before qP on input up to time t.
- induction step:
  After each iteration, V shows states at or before q reachable from states at or before qP on input up to time t if:
  (a) V shows states before q reachable from states at or before qP at time t before iter,
  (b) V shows qP was reachable on input up to t-1, and

requires $A_{FSA} \in \mathcal{O}(n \cdot q^2)$ because a statement is nested in one loop over $X$, two loops over $Q$
(c) M contains a transition from $q_P$ to $q$ on the input at $t$.

- **correctness:**
  After loop ends, because it looped over all states, $V$ shows all reachable states from $q_P$ on input up to time $t$.

We can now prove correctness of the next inner loop over $q_P$, given $t$:

- **loop invariant:**
  After each iteration, $V$ shows states reachable from states at or before $q_P$ on input up to time $t$.

- **base case:**
  Before loop begins, $V$ shows states reachable on input up to the previous time $t-1$.

- **induction step:**
  After each iteration, $V$ shows states reachable from states at or before $q_P$ on input up to time $t$ if
  (a) $V$ shows states reachable from states before $q_P$ on input up to time $t$, and
  (b) the inner loop leaves $V$ showing reachable states from $q_P$ on input up to time $t$.

- **correctness:**
  After loop ends, because it looped over all states, $V$ shows reachable states at or before time $t$.

We can now prove correctness of the outer loop over $t$:

- **loop invariant:**
  After each iteration, $V$ shows reachable states at time $t$.

- **base case:**
  Before loop begins, $V$ contains only initial states.

- **induction step:**
  After each iteration, $V$ shows states reachable on input up to $t$ if
  (a) $V$ shows states reachable on input up to time $t-1$, and
  (b) the inner two loops leave $V$ showing reachable states on input at time $t$.

- **correctness:**
  After loop ends, $V$ shows reachable states at end of input.

Then do same for other loops, proving correctness of assumptions in induction step.