Ling 5801: Lecture Notes 2
From FSAs to Regular Expressions

1. Pattern matching with regular expressions

 it’s often useful to search strings for patterns
 (e.g. find all sentences containing two commas)

 Regular Expressions provide a nice shorthand for such patterns
 all regular expressions can be recognized by FSAs

2. Regular expression syntax

 a Regular Expression (RE) \(\rho \) is a string made up of:

 observation symbols: \(x \)
 e.g.: \(a \)
 language: \(\{ a \} \)

 concatenations of REs: \(\rho \rho' \)
 e.g.: \(ab \)
 language: \(\{ ab \} \)

 disjunctions of REs: \((\rho' | \rho'') \)
 e.g.: \((ab | b) \)
 language: \(\{ ab, b \} \)

 ‘Kleene star’ repetitions of RE: \((\rho')^* \)
 e.g.: \((ab)^* \)
 language: \(\{ \epsilon, ab, abab, ababab, ... \} \)
 (epsilon \(\epsilon \) means the empty string)

 For example:

 \(\text{the (dog|cat|rat) (that (chased|ate|nibbled) the (cat|rat|malt))}^* \)

 recognizes the following sentences:

 \(\{ \text{the rat,} \) \)
 \(\text{the rat that nibbled the malt,} \)
 \(\text{the cat that ate the rat that nibbled the malt,} \)
 \(\text{the dog that chased the cat that ate the rat that nibbled the malt that ate the rat that chased the cat,} \)
 \(\ldots \) \}

 REs are often augmented with the following (equiv. to combinations of concat, disjn, star):

 wildcard symbols: \(. = (x|x'|x''|...) \)
 e.g.: \(. \)
 lang: \(\{ a, b, c, d, ... \} \)

 symbol disjunctions: \([xx'|x''] = (x|x'|x'') \)
 e.g.: \([ace] \)
 lang: \(\{ a, c, e \} \)

 symbol ranges: \([x-x'] = (x|...|x') \)
 e.g.: \([a-e] \)
 lang: \(\{ a, b, c, d, e \} \)

 one or more repetitions of REs: \((\rho')^+ = \rho'(\rho')^* \)
 e.g.: \((ab)^+ \)
 lang: \(\{ ab, abab, ababab, ... \} \)

 zero or one repetitions of REs: \((\rho')? = (\rho'|\epsilon) \)
 e.g.: \((ab)? \)
 lang: \(\{ \epsilon, ab \} \)

 Most RE implementations assume \(.^* \), \(\rho^* \), let anchors ‘\(^\cdot\)' and ‘\(^$\)’ match beginning/end of line

3. We can build an FSA \(FSA(\rho) \) that accepts the same language as any RE \(\rho \)

 in other words, \(\forall \rho . L(FSA(\rho)) = L(\rho) \)

 in other words, \(\mathcal{L}(RE) \subseteq \mathcal{L}(FSA) \)

 base case – for observations in RE:
observation symbols x:

$$FSA(x) = \langle \{q, q'\}, \{x\}, \{q\}, \{q'\}, \{(q, x, q')\} \rangle$$

graphically:

inductive step – combine REs using ‘ϵ-transitions’ w/o associated obs, then compile out (assume state sets of sub-expressions $Q_{FSA(\rho_1)}$ and $Q_{FSA(\rho_2)}$ are disjoint):

- concatenations of REs ρ_1, ρ_2:
 $$FSA(\rho_1 \rho_2) = \langle Q_{FSA(\rho_1)} \cup Q_{FSA(\rho_2)}, X_{FSA(\rho_1)} \cup X_{FSA(\rho_2)}, S_{FSA(\rho_1)}, F_{FSA(\rho_2)}, M_{FSA(\rho_1)} \cup M_{FSA(\rho_2)} \cup \{(q', \epsilon, q'') \mid q' \in F_{FSA(\rho_1)}, q'' \in S_{FSA(\rho_2)}\} \rangle$$

 graphically:

- disjunctions of REs ρ_1, ρ_2:
 $$FSA(\rho_1 \mid \rho_2) = \langle Q_{FSA(\rho_1)} \cup Q_{FSA(\rho_2)}, X_{FSA(\rho_1)} \cup X_{FSA(\rho_2)}, S_{FSA(\rho_1)} \cup S_{FSA(\rho_2)}, F_{FSA(\rho_1)} \cup F_{FSA(\rho_2)}, M_{FSA(\rho_1)} \cup M_{FSA(\rho_2)} \rangle$$

2
• Kleene star repetitions of RE ρ:

$$FSA(\rho^*) = \langle Q_{FSA(\rho)} \cup \{q, q''\},$$

$$X_{FSA(\rho)},$$

$$\{q\},$$

$$\{q''\},$$

$$M_{FSA(\rho)} \cup \{(q, \epsilon, q') \mid q' \in S_{FSA(\rho)}\} \cup \{(q'', \epsilon, q'') \mid q'' \in F_{FSA(\rho)}\}$$

$$\cup \{(q, \epsilon, q''), (q'', \epsilon, q)\}\rangle$$
for example:

finally, remove \(\epsilon \)-transitions — this is an \emph{algorithm}, a procedure for computing something:

(a) \(\epsilon \) closure – add shortcuts for progressively longer chains of \(\epsilon \)-transitions:

\[
M^0_A = M_A \\
\text{for each chain length } k \text{ from } 1 \text{ to } |Q|: \\
M^k_A = M^{k-1}_A \cup \{\langle q, \epsilon, q' \rangle \mid \langle q, \epsilon, q' \rangle \in M^{k-1}_A, \langle q', \epsilon, q'' \rangle \in M_A\}
\]

(b) merge \(\epsilon \)-transitions with labeled transitions, start/final states to get new automaton \(A' \):

\[
A' = \langle Q_A, \\
X_A, \\
S_A \cup \{q' \mid \exists q. q \in S_A, \langle q, \epsilon, q' \rangle \in M^{|Q|}_A\}, \\
F_A \cup \{q \mid \exists q'. \langle q, \epsilon, q' \rangle \in M^{|Q|}_A, q' \in F_A\}, \\
\{\langle q, x, q' \rangle \mid \langle q, x, q' \rangle \in M_A, x \in X_A\} \cup \{\langle q, x, q'' \rangle \mid \langle q, \epsilon, q'' \rangle \in M^{|Q|}_A, \langle q', x, q'' \rangle \in M_A\}\rangle
\]

for example (ignoring unconnected states):
4. **Practice:**

Write a regular expression to recognize the infinite language containing the following
(treat each word as a single symbol):

- hello ok bye
- hello ok ok bye
- hello ok ok ok bye
- hello ok ok ok ok bye

5. FSAs also closed under the following operations (so REs could support them):

- **reversal of RE** \(\rho \): (change direction of all arrows)

\[
FSA(\rho^R) = \langle Q_{FSA(\rho)},
X_{FSA(\rho)},
F_{FSA(\rho)},
S_{FSA(\rho)},
\{\langle q', x, q \rangle \mid \langle q, x, q' \rangle \in M_{FSA(\rho)} \} \rangle
\]

- **negation of RE** \(\rho \): (swap final and non-final states)

\[
FSA(\neg \rho) = \langle Q_{FSA(\rho)},
X_{FSA(\rho)},
S_{FSA(\rho)},
Q_{FSA(\rho)} - F_{FSA(\rho)},
M_{FSA(\rho)} \rangle
\]

- **conjunction of REs** \(\rho_1, \rho_2 \): (use pairs of sub-expression states)

\[
FSA(\rho_1 \land \rho_2) = \langle Q_{FSA(\rho_1)} \times Q_{FSA(\rho_2)},
X_{FSA(\rho_1)} \cap X_{FSA(\rho_2)},
\{\langle q, q' \rangle \mid q \in S_{FSA(\rho_1)}, q' \in S_{FSA(\rho_2)} \},
\{\langle q, q' \rangle \mid q \in F_{FSA(\rho_1)}, q' \in F_{FSA(\rho_2)} \},
\{\{\langle q'', x, q''' \rangle \mid \langle q, x, q' \rangle \in M_{FSA(\rho_1)}, \langle q'', x, q''' \rangle \in M_{FSA(\rho_2)} \} \rangle
\]

- **exclusion of REs** \(\rho_1, \rho_2 \): (combine negation and conjunction)

\[
FSA(\rho_1 - \rho_2) = FSA(\rho_1 \land \neg \rho_2)
\]

6. **Limits of FSAs / REs:**

FSAs (and therefore REs) can only recognize sequences with finitely-bounded memory

Pumping lemma:

if \(L \) is an infinite regular language (in \(\mathcal{L}(FSA) \)), then \(\exists x, y, z \) such that \(y \neq \epsilon \) and \(xy^n z \in L \)
for all \(n \geq 0 \)

(where \(y^n \) means \(n \) repetitions of string \(y \))
Exception: $a^n b^n$: $\{\epsilon, ab, aabb, aaabbb, \ldots\}$ is not regular

why not?
because, in order to allow infinite languages with finites states, y must occur either . . .

- within the a’s, generating strings like $aaaabbb$ when pumped, or
- within the b’s, generating strings like $aaabbbb$ when pumped, or
- within the crossover from a’s to b’s, generating strings like $aaababbb$ when pumped

none of which are in $a^n b^n$

NOTE: the same problem comes up in trying to recognize nested parentheses!

7. Cognitive plausibility of FSAs

- problem for FSAs – we seem to learn general syntactic patterns w. unbounded nesting:

 ‘[NP [NP the photos] [NP the reporter] [v took]] were good’
 (NP → NP NP V)

 when center NP is expanded, this generates non-regular language $NP^n NP V^n$:

 e.g. ‘[NP the photos] [NP [NP the reporter] [NP I] [v hired]] [v took] were good’

- but in practice – we can’t keep track of more than 4 or so disconnected ideas:

 ‘the malt the rat the cat the dog the man I know bought bit chased ate was rancid’

this is called a ‘competence / performance’ distinction: we are FSAs emulating non-FSAs