(1) Definitions

a. A preorder on a set \(A \) is a binary relation \(\sqsubseteq \) (read ‘less than or equivalent to’) on \(A \) which is reflexive and transitive.

b. An antisymmetric preorder is called an order.

c. The equivalence relation \(\equiv \) induced by the preorder is defined by \(a \equiv b \) iff \(a \sqsubseteq b \) and \(b \sqsubseteq a \). (Note that, if \(\sqsubseteq \) is an order, this reduces to the identity relation on \(A \), and correspondingly \(\sqsubseteq \) is read as ‘less than or equal to’.)

(2) Background Assumptions

Until further notice:

a. \(\sqsubseteq \) is a preorder on \(A \)

b. \(\equiv \) is the equivalence relation it induces

c. \(S \subseteq A \)

d. \(a \in A \)

(3) Definitions

a. We call \(a \) an upper (lower) bound of \(S \) iff, for every \(b \in S \), \(b \sqsubseteq a \) \((a \sqsubseteq b)\).

Suppose moreover that \(a \in S \). Then \(a \) is said to be:

b. greatest (least) in \(S \) iff it is an upper (lower) bound of \(S \);

c. a top (bottom) iff it is greatest (least) in \(A \);

d. maximal (minimal) in \(S \) iff, for every \(b \in S \), if \(a \sqsubseteq b \) \((b \sqsubseteq a)\), then \(b \sqsubseteq a \) \((a \sqsubseteq b)\), so that in fact \(a \equiv b \).
(4) **Observations**

a. If \(a \) is greatest (least) in \(S \), then it is maximal (minimal) in \(S \).

b. All greatest (least) members of \(S \) are equivalent.

c. So if \(\sqsubseteq \) is an order, \(S \) has at most one greatest (least) member, and \(A \) has at most one top (bottom).

(5) **Definitions**

Let \(\text{UB}(S) \) (\(\text{LB}(S) \)) be the set of upper (lower) bounds of \(S \). (Note: if \(S = \{ a \} \), then \(\text{UB}(S) \) (\(\text{LB}(S) \)) is usually written \(\uparrow a \) (\(\downarrow a \)), read ‘up of \(a \’) (‘down of \(a \’).)

a. A least member of \(\text{UB}(S) \) is called a **least upper bound** (**lub**) of \(S \).

b. A greatest member of \(\text{LB}(S) \) is called a **greatest lower bound** (**glb**) of \(S \).

(6) **Observations**

a. Any greatest (least) member of \(S \) is a lub (glb) of \(S \).

b. All lubs (glbs) of \(S \) are equivalent.

c. If \(\sqsubseteq \) is an order, then \(S \) has at most one lub (glb).

d. A lub (glb) of \(A \) is the same thing as a top (bottom).

e. A lub (glb) of \(\emptyset \) is the same thing as a bottom (top).

(7) **Binary glbs and lubs**

If \(S = \{ a, b \} \) and \(S \) has a unique glb (lub), it is written \(a \sqcap b \) (\(a \sqcup b \)).

(8) **Facts about \(\sqcap \) and \(\sqcup \) when \(\sqsubseteq \) is an order**

a. (Idempotence) \(a \sqcap a \) exists and equals \(a \).

b. (Commutativity) If \(a \sqcap b \) exists, so does \(b \sqcap a \), and they are equal.

c. (Associativity) If \((a \sqcap b) \sqcap c \) and \(a \sqcap (b \sqcap c) \) both exist, they are equal.
d. The preceding three assertions remain true if $∩$ is replaced by \sqcup.

e. (Interdefinability) $a \sqsubseteq b$ iff $a \cap b$ exists and equals a iff $a \sqcup b$ exists and equals b.

f. (Absorbtion)

i. If $(a \cap b) \sqcup b$ exists, it equals b.

ii. If $(a \sqcup b) \cap b$ exists, it equals b.

(9) Definitions

a. Suppose A and B are preordered by \sqsubseteq and \leq respectively. Then a function $f: A \to B$ is called:

i. monotonic or order-preserving iff, for all $a, a' \in A$, if $a \sqsubseteq a'$, then $f(a) \leq f(a')$;

ii. antitonic or order-reversing iff, for all $a, a' \in A$, if $a \sqsubseteq a'$, then $f(a') \leq f(a)$.

b. A monotonic (antitonic) bijection is called a preorder isomorphism (preorder anti-isomorphism) provided its inverse is also monotonic (antitonic).

c. Two preordered sets are said to be preorder-isomorphic provided there is a preorder isomorphism from one to the other.