REVIEW OF PREORDERS

Carl Pollard
Ohio State University

Linguistics 681
Algebraic Linguistics
Thursday, January 8, 2009

These slides are available at:

http://www.ling.ohio-state.edu/~plummer/ling681
(1) **Definitions**

a. A **preorder** on a set A is a binary relation \sqsubseteq (read ‘less than or equivalent to’) on A which is reflexive and transitive.

b. An antisymmetric preorder is called an **order**.

c. The equivalence relation \equiv induced by the preorder is defined by $a \equiv b$ iff $a \sqsubseteq b$ and $b \sqsubseteq a$. (Note that, if \sqsubseteq is an order, this reduces to the identity relation on A, and correspondingly \sqsubseteq is read as ‘less than or equal to’.)

(2) **Background Assumptions**

Until further notice:

a. \sqsubseteq is a preorder on A

b. \equiv is the equivalence relation it induces

c. $S \subseteq A$

d. $a \in A$
(3) **Definitions**

a. We call \(a \) an **upper** (lower) **bound** of \(S \) iff, for every \(b \in S \), \(b \sqsubseteq a \) (\(a \sqsubseteq b \)).

Suppose moreover that \(a \in S \). Then \(a \) is said to be:

b. **greatest** (least) in \(S \) iff it is an upper (lower) bound of \(S \);

c. a **top** (bottom) iff it is greatest (least) in \(A \);

d. **maximal** (minimal) in \(S \) iff, for every \(b \in S \), if \(a \sqsubseteq b \) (\(b \sqsubseteq a \)), then \(b \sqsubseteq a \) (\(a \sqsubseteq b \)), so that in fact \(a \equiv b \).
(4) **Observations**

a. If a is greatest (least) in S, then it is maximal (minimal) in S.

b. All greatest (least) members of S are equivalent.

c. So if \subseteq is an order, S has at most one greatest (least) member, and A has at most one top (bottom).

(5) **Definitions**

Let $UB(S)$ ($LB(S)$) be the set of upper (lower) bounds of S. (Note: if $S = \{a\}$, then $UB(S)$ ($LB(S)$) is usually written $\uparrow a$ ($\downarrow a$), read ‘up of a’ (‘down of a’)).

a. A least member of $UB(S)$ is called a **least upper bound (lub)** of S.

b. A greatest member of $LB(S)$ is called a **greatest lower bound (glb)** of S.
(6) Observations

a. Any greatest (least) member of S is a lub (glb) of S.
b. All lubs (glbs) of S are equivalent.
c. If \subseteq is an order, then S has at most one lub (glb).
d. A lub (glb) of A is the same thing as a top (bottom).
e. A lub (glb) of \emptyset is the same thing as a bottom (top).

(7) Binary glbs and lubs

If $S = \{a, b\}$ and S has a unique glb (lub), it is written $a \sqcap b$ ($a \sqcup b$).
(8) **Facts about \(\sqcap \) and \(\sqcup \) when \(\sqsubseteq \) is an order**

a. (Idempotence) \(a \sqcap a \) exists and equals \(a \).

b. (Commutativity) If \(a \sqcap b \) exists, so does \(b \sqcap a \), and they are equal.

c. (Associativity) If \((a \sqcap b) \sqcap c \) and \(a \sqcap (b \sqcap c) \) both exist, they are equal.

d. The preceding three assertions remain true if \(\sqcap \) is replaced by \(\sqcup \).

e. (Interdefinability) \(a \sqsubseteq b \) iff \(a \sqcap b \) exists and equals \(a \) iff \(a \sqcup b \) exists and equals \(b \).

f. (Absorption)

 i. If \((a \sqcap b) \sqcup b \) exists, it equals \(b \).

 ii. If \((a \sqcup b) \sqcap b \) exists, it equals \(b \).
(9) Definitions

a. Suppose A and B are preordered by \sqsubseteq and \leq respectively. Then a function $f: A \to B$ is called:

i. **monotonic** or order-preserving iff, for all $a, a' \in A$, if $a \sqsubseteq a'$, then $f(a) \leq f(a')$;
ii. **antitonic** or order-reversing iff, for all $a, a' \in A$, if $a \sqsubseteq a'$, then $f(a') \leq f(a)$.

b. A monotonic (antitonic) bijection is called a **preorder isomorphism** (**preorder anti-isomorphism**) provided its inverse is also monotonic (antitonic).

c. Two preordered sets are said to be **preorder-isomorphic** provided there is a preorder isomorphism from one to the other.