PROBLEM SET THREE: RELATIONS AND FUNCTIONS

Problem 1

a. Prove that the composition of two bijections is a bijection.

b. Prove that the inverse of a bijection is a bijection.

c. Let \(U \) be a set and \(R \) the binary relation on \(\wp(U) \) such that, for any two subsets of \(U \), \(A \) and \(B \), \(A R B \) iff there is a bijection from \(A \) to \(B \).

Prove that \(R \) is an equivalence relation.

Problem 2

Let \(A \) be a fixed set. In this question “relation” means “binary relation on \(A \).” Prove that:

a. The intersection of two transitive relations is a transitive relation.

b. The intersection of two symmetric relations is a symmetric relation.

c. The intersection of two reflexive relations is a reflexive relation.

d. The intersection of two equivalence relations is an equivalence relation.

Problem 3

Background. For any binary relation \(R \) on a set \(A \), the symmetric interior of \(R \), written \(\text{Sym}(R) \), is defined to be the relation \(R \cap R^{-1} \). For example, if \(R \) is the relation that holds between a pair of people when the first respects the other, then \(\text{Sym}(R) \) is the relation of mutual respect. Another example: if \(R \) is the entailment relation on propositions (the meanings expressed by utterances of declarative sentences), then the symmetric interior is truth-conditional equivalence.

Prove that the symmetric interior of a preorder is an equivalence relation.

Problem 4

Background. If \(\sqsubseteq \) is a preorder, then \(\text{Sym}(\sqsubseteq) \) is called the equivalence relation induced by \(\sqsubseteq \) and written \(\equiv_{\sqsubseteq} \), or just \(\equiv \) if it’s clear from the context which preorder is under discussion. If \(a \equiv b \), then we say \(a \) and \(b \) are tied with respect to the preorder \(\sqsubseteq \).

Also, for any relation \(R \), there is a corresponding asymmetric relation called the asymmetric interior of \(R \), written \(\text{Asym}(R) \) and defined to be
For example, the asymmetric interior of the love relation on people is the unrequited love relation.

In a context where there is a fixed preorder \sqsubseteq, $a \sqsubseteq b$ is usually read “a is less than or equivalent to b”; if in addition \sqsubseteq is antisymmetric (i.e. an order), then it is read “a is less than or equal to b” because the only thing tied with a is a itself.

In a context where there is a fixed preorder \sqsubseteq, $\text{Asym}(\sqsubseteq)$ is usually read “strictly less than”. Careful: if $a \text{Asym}(\sqsubseteq) b$, then not only are a and b not equal, but also they are not equivalent.

If \sqsubseteq is a preorder, then we say c is strictly between a and b to mean that a is strictly less than c and c is strictly less than b.

Given a preorder \sqsubseteq on a set A and $a, b \in A$, we say a is covered by b if a is strictly less than b and there is nothing strictly between them. The relation consisting of all such pairs (a, b) is called the covering relation induced by \sqsubseteq and written $\prec\sqsubseteq$, or just \prec when no confusion can arise.

a. Prove that \prec is an intransitive relation.
b. Let \leq be the usual order on ω. What is the induced covering relation? [Hint: We encountered it earlier, under another name.]
c. Let \leq be the usual order on the real numbers. What is the induced covering relation?
d. Let U be a set, \subseteq_U the subset inclusion relation on $\varnothing(U)$, and \prec the corresponding covering relation. In simple English, how do you tell by looking at two subsets A and B of U whether $A \prec B$?

Problem 5

Background. For any binary relation R on A, the reflexive closure of R, written $\text{Ref}(R)$, is defined to be the relation $R \cup \text{id}_A$. Clearly if R is transitive then $\text{Ref}(R)$ is a preorder.

Now suppose P is the set of all people who have ever lived (i.e. a set that we are using to represent the collection of people who have ever lived) and let D be a transitive asymmetric relation on P used to represent the relation that holds between a pair of people if the first is a descendant of the second. Let $\sqsubseteq = \text{Ref}(D)$, and \prec the corresponding covering relation. To keep things simple, assume (counterfactually, of course) that (1) every person has exactly two parents, and (2) any two people with a parent in common have both of their parents in common.
a. In plain English, why did we require that D be transitive and asymmetric? (That is, what facts of life are modelled by imposing these conditions on D?)

b. Write a formula (sentence made up of Mathese symbols) expressing the condition (1). [Hint: it is much easier to express this in terms of $<$ than in terms of D!]

c. Write a formula expressing the condition (2). [Same hint as immediately above.]

d. Suppose a and b are two people. Write a formula that means that a and b are cousins. (Yes, it is a bit odd that these people’s names are “a” and “b”.) (To eliminate any variation in or unclarity about the meaning of English kin terms, assume that a person’s cousins are the children of his or her parents’ siblings, not counting ones with whom he or she has a parent in common).

Translate the following formulas into plain English, using familiar kinship terms.

e. $a \prec b$

f. $b \prec^{-1} a$

g. $a \prec o \prec b$

h. $a \left(\prec o \prec^{-1}\right) \\setminus \text{id}_P b$

i. $a \left(\prec^{-1} o \prec\right) \\setminus \text{id}_P b$