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Overview

Number agreement errors are relatively common in production. How do comprehenders
deal with errorful input? We suggest that reading time patterns reflect a rational solution:
comprehenders know which kinds of errors are likely, and recover more easily from more
probable errors.

1. Agreement errors in production

Bock & Miller (1991) find more number errors with a mismatching intervening noun:
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The keys to the cabinet ... was rusty

The keys to the cabinets ... was rusty

The key to the cabinet ... were rusty

The key to the cabinets ... were rusty

Franck, Vigliocco & Nicol (2002): this is not just due to adjacency. With two embedded
NPs, the first has more effect on the error rate. Errors may reflect syntactic structure: plural
features are more likely to be ”misplaced” by smaller tree distances.
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2. Comprehension of agreement errors

Pearlmutter et al. (1999) measured reading times on sentences like (2). Correct agreement
(2a,b) leads to faster reading, but this interacts with whether the intervening NP has the
same (2a,d) or different (2b,c) number.
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The key to the cabinet was rusty ... (grammatical, match)

The key to the cabinets was rusty ... (grammatical, mismatch)

The key to the cabinets were rusty ... (ungrammatical, mismatch)

The key to the cabinet were rusty ... (ungrammatical, match)

3. Optimal comprehension under uncertainty

Efficient comprehenders should “prepare” for structures according to their probability
of occurrence (Hale 2001; Levy 2008a). If the probability of errors in the input can be
approximated, then an efficient comprehender should maintain “expectation” over past as
well as upcoming material (Levy 2008b).

Levy (2008b) uses a string edit distance model of noisy input like production errors:
e.g., what strings are probable errors if the intention is “a cat sat”?
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Keeping track of the probability of what might have been intended accounts for compre-
hension patterns in “locally coherent” sentences (Tabor, Gantalucci & Richardson 2004):
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(3) a.
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The coach smiled at the player ... tossed a frisbee

The coach smiled as the player ...

The coach smiled at the player who ...

The word (“tossed”) is relatively probable under other similar input strings, so it may indicate
an error. The comprehender re-evaluates the input, slowing reading speed.

If we replace the string-edit measure with a model of number production errors, the
comprehension model represents a rational solution to dealing with these errors.

4. A computational model of production errors

Defines a probability that the speaker will produce a particular number error given the sen-
tence they intended, with two sources of number error.
(a) each noun phrase may “flip” its plural feature with probability:
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(b) a plural feature at Na may “move” to a singular noun Nb with probability proportional to
the tree distance between them:
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Errors at each noun are independent, and summing over all ways to derive a tree s from a
tree i gives the distribution P(Spoken = s|Intended = i). We estimate the two parameters, φ
(“flip”) and µ (“move”) from production error rates reported by Franck et al. (2002).

We plug this production model into the comprehension under uncertain input model:

Comprehension model predictions for reading times
(2a) fastest grammatical (no error) match (error not expected)
(2b) fast grammatical (no error) mismatch (error somewhat expected)
(2c) slow ungrammatical (error) mismatch (error somewhat expected)
(2d) slowest ungrammatical (error) match (error not expected)

5. Experimental results

We replicate Pearlmutter et al.’s (1999) results in English, and in translation in French.
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β s.e. t p
Intercept 575.72 53.61 10.74 0.0001
lang=En -177.23 64.23 -2.76 0.0018 English read faster
error 174.52 43.55 4.01 0.0001
match 47.02 29.47 -1.60 0.1160 Similar to previous results
error:match 158.86 41.82 3.80 0.0004
lang:error -120.37 45.79 -2.63 0.0078 Greater error effect for French

6. Testing the comprehension model

We regress reading times on the comprehension model’s predictions for each language
separately, using language-specific error models (φ, µ).

Empirical data

Model

grammatical error
match mis mis match

α = 403.73, β = 18.85
t = 3.89, p < .001
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α = 574.71, β = 64.51
t = 4.13, p < .001
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English data is better predicted using φ, µ estimated from English production error
rates (log likelihood=-3301.3) than from French rates (-3303.0). French data is better
predicted using error rates from French (-1662.9) than English (-1663.7).

Conclusions

A comprehension model which represents an optimal allocation of processing re-
sources under noisy input predicts behavioral results in two domains:
• syntactically well-formed local coherences as reported by Tabor et al. (2004)
• syntactically ill-formed agreement errors as reported by Pearlmutter et al. (1999)

Our comprehension model incorporates knowledge about the probability of different
kinds of production error. Language-specific estimates of these probabilities result in a
better fit to comprehension data.
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