
Zipf's Law
In this unit, we'll be verifying the pattern of word frequencies known as Zipf's Law. Zipf's idea was pretty
simple. Imagine taking a natural language corpus and making a list of all the words ranked by frequency.
For instance, 'the' might be the most common word, and we'd give it rank 1. 'of' might be the second,
which gets rank 2. And 'cassowary' might bring up the rear with rank 1082 or whatever. The "Law" is that
the frequency of the word with rank n is proportional to 1/n. (In other words, 'the' is around twice as
common as of, and a thousand times more common than 'cassowary'.)

The easiest way to check Zipf's Law for a particular corpus is to plot the frequencies of the words in rank
order on a log-log graph. To the extent that the Law is true for that dataset, the points should appear in a
straight line. So we'll start by writing a program that does this. And we will use as our corpus "Alice in
Wonderland" ("alice.txt" on the Carmen website for the class).

Software design
This preliminary discussion gives us our first ideas about what the program we're writing needs to do.

• Compute the frequency of each word in the corpus

• Rank the words by frequency

• Make a plot of the data

So our program will probably have three parts, one for each operation. Let's focus on the first one for now.
To compute the frequency of each word, we'll need to:

• Open the corpus file

• Read in each utterance

• Tokenize it into words

• Check the identity of each word and add 1 to the appropriate counter

The first three steps of this process are pretty straightforward from the last assignment. But the fourth step
might take a bit more work.

You might imagine doing it with separate counter variables, the way we kept track of the total of words
spoken by men and by women in the first assignment:

#------------------initialization of tracking variables-------------
countThe = 0
countOf = 0
... #lots of variables
countCassowary = 0

#------------------processing--------------------
if word == "the":
 countThe += 1
elif word == "of":
 countOf += 1
... #lots of 'if's
elif word == "cassowary":
 countCassowary += 1

But of course this isn't really practical.

Instead, we're going to need some kind of data structure. This is a variable, or a group of variables, that
store some complex information in a way that allows us to get to specific pieces of it when we need them.

http://en.wikipedia.org/wiki/Zipf%27s_law
https://carmen.osu.edu/

What data structure you should use for a given problem is partly a matter of clarity (you want something
that makes sense and is easy to use) and partly of efficiency (you want your code to run quickly).

Before going on to the next section, think about how you'd want to represent the counts of words.

Parallel lists

Counting words with lists
The first structure we'll look at is a pair of parallel lists. We'll store all the words in the first list (in the order
they first occur in the text). And in the second list, we'll store the counts of those words. So, for instance,
the beginning of the lists will be:

LIST A: ["alice's", 'adventures', 'in', 'wonderland', 'lewis', 'carroll', 'the', 'millennium', 'fulcrum']
LIST B: [11, 4, 351, 2, 1, 1, 1605, 1, 1]

Our data structure is meant to represent a mapping from word -> count. In an abstract sense, a list is a
mapping from index -> data; that is, we can ask for list[0] and get back the appropriate value. So what
we've done with the parallel lists is build the following:

LIST A: index -> word
LIST B: index -> count

To derive word -> count, we need to find the index which maps to word and then check the corresponding
count.

Python provides several builtin functions which can make this task easier, but for now, we should do
things from the bottom up to make sure we understand how they work.

So we will first start to find the correct index. Build a simple example program which defines a list and
outputs the index in this list of a given word. For example, we will defined the following list and search for
the index of the word "adventures”. For the word “adventures”, the index should be 1.

lexicon = ["alice's", 'adventures', 'in', 'wonderland', 'lewis', 'carroll', 'the', 'millennium', 'fulcrum', 'edition']
searchFor = "adventures" #we can change this word around

#your code goes here

print("the index corresponding to", searchFor, "is", wordIndex)

Like some of our previous programs, this one has an initializer block that runs once, and then a
processing loop. Since we're looking for an index, we'll need a way to count up the numbers from 0 to
some stopping point. Python offers two ways to do this: the range function takes an integer n and returns
the list [0, 1... n - 1]. The enumerate function takes a list [a0, a1, ...an] and returns the list [(0, a0), (1,
a1)..., (n, an)]. For instance, you can try out the following:

for (ind, item) in enumerate(["alice's", "adventures", "in"]):
 print("item", ind, "is", item)

Our code will look like this:

lexicon = ["alice's", 'adventures', 'in', 'wonderland', 'lewis', 'carroll', 'the', 'millennium', 'fulcrum', 'edition']
searchFor = "adventures"

wordIndex = None

for (ind, item) in enumerate(lexicon):
 if(item == searchFor):
 wordIndex = ind

print("the index corresponding to", searchFor, "is", wordIndex)

Software engineering interlude: functions
The index-finding program is a little sub-element of our Zipf's Law program; we've written and tested it
independently, and we're eventually going to end up using it several times. We could copy and paste it
into all those places, but this makes our code longer and harder to read--- and if we need to modify the
index-finder, we may end up having to make the same change three or four times. Instead, we can
abstract it into a function. Functions that you write are just like Python's builtin functions, like len and
print. They take arguments and return a value. To create your own function, you use the def keyword:

def findIndex(searchFor, lexicon):
 [statements]

The def block defines a new function with the name you specify (here, findIndex). All the statements in the
indented block under def belong to the function. Somewhere inside the function, you can use the keyword
return, followed by an expression. If the function hits that line, it stops executing, and whatever was
returned is the value of the function.

As an example, here is a fairly trivial function:

def addTwo(num):
 print("I am adding two to", num)
 return num + 2

You can imagine Python function definition to transform a function call like mySum = addTwo(23) into:

#------variable binding------------
num = 23
#------function body--------------
print("I am adding two to", num)
returnValue = num + 2
#------after the function---------
mySum = returnValue

Actually, this imagined view isn't quite correct... the real answer involves the concept of variable scope,
and in particular what happens if you're already using the variable name num outside the function, for
example num = 10. In this case, num has the value of 23 inside the function, but when the function is
over, it snaps back to its previous value of 10. At this stage, a more detailed explanation is likely to be
more confusing than helpful.

Now write the findIndex function. (You might wonder what happens if the word you're looking for isn't in
the lexicon. In this case, we still need to return something... a good choice is the special Python value
None, which is Python's default way of saying something is not found or not defined.)

Write some test code to check whether it works on a few simple cases.

Our findIndex function will be as follows:

def findIndex(word, lexicon):
 #----check if the word is already in the lexicon
 for (ind,lexeme) in enumerate(lexicon):
 if lexeme == word:
 return ind
 return None

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Back to word counting: updating our data structure
With the findIndex function, we're making progress towards our parallel list implementation. What we want
to do is cycle through all the words in the Alice corpus, and for each one, get its index with findIndex and
increment the corresponding count. Doing this should be straightforward (using the cycling-through-words
code from the previous assignment as a model, and the findIndex function you just wrote)... except for the
case where findIndex returns None.

We can imagine what this case is like. Your lexicon contains a list of words in the order of first
appearance, and your counts contain the number of times you've seen each one so far. For instance, they
may look like this:

lexicon = ["alice's", 'adventures', 'in',]
counts = [1, 1, 1]

Your next word is "wonderland", which you've never seen before. Once you've incorporated it into the data
structure, what should it look like?

We'll need to tack "wonderland" on to the end of the lexicon list, and we'll need to add another slot for a
number to the end of the counts list. The best way to do this is with the append method (this is another
class function, like split). The first argument to append (before the dot) is a list, and append takes its
second argument (inside the parentheses) and glues it on to the end.

>>> myList = [1, 2, 3]
>>> myList
[1, 2, 3]
>>> myList.append(6)
>>> myList
[1, 2, 3, 6]

>>> myList = ["apple", "banana", "orange"]
>>> myList.append("grape")
>>> myList
['apple', 'banana', 'orange', 'grape']

We should lengthen both lists only in the case where the index of the word is None--- otherwise, we'd end
up putting words into the lexicon more than once.

Now you have all the pieces to write the word counting program with parallel lists. Go ahead and write it;
your program should read in all of alice.txt and compute the count for each word.

Print the frequency of the following words: “Alice”, “cassowary”, “roses”, “rabbit”, “mirror”.

How long does the whole script take? You can find out using time at the command line.

$ time python3 countWords.py
real 0m1.239s
user 0m1.216s
sys 0m0.008s

The time you're probably interested in is the real or wallclock time, which is a straightforward measure of
how long the program took to execute. (The other two explain how this time is partionned between your
code and the operating system. Usually they aren't very important.)

Efficiency interlude
In the next section, we'll look at a data structure that outperforms the parallel list structure for counting the
words in alice.txt. What's wrong with the parallel lists? Recall that, conceptually, parallel lists had this
structure:

LIST A: index -> word
LIST B: index -> count

These arrows show operations which are fast. If we have an index, we can find both the corresponding
word and count. However, our program goes in the opposite direction. In order to obtain word -> count, we
had to invert the index -> word mapping to obtain a word -> index. How long does it take our program to
do this? In the worst case (where the word isn't in the lexicon at all), we have to check every word in the
lexicon in order to figure out the answer.

What we really need is a structure where the arrow goes the other way: word -> index, or even just word
-> count. In the next section, we'll see that Python supports such a structure: the dictionary. We won't go
into detail about how a dictionary works, but you can gain some insight by thinking about a real-life paper
dictionary.

A paper dictionary has the structure word -> definition. If you want to look up the word cassowary, you can
use alphabetic comparison to find it quickly. First pull out volume C, eliminating 25 other volumes in a
single operation! Open the volume to the middle (perhaps cobra); cassowary has to be before that, so flip
back to ceilidh and then perhaps overshoot to caracara before ending up on the right page, where you can
search word-by-word until you find what you want. Out of the entire dictionary, you've looked at only ten or
eleven entries before ending up where you want to be.

Computer dictionary structures use all these ideas to ensure a fast key -> value mapping. They separate
the data into volumes (this strategy is called hashing). They sort things to enable a quick back-and-forth
search (search trees). And when the data is narrowed down enough, they flip through it entry-by-entry
(linear search, which is what we did for the whole dataset in the previous section). Understanding the
design and implementation of these kinds of structures is an entire course all on its own. We won't go into
more detail here; the thing to remember is that a Python dictionary maps quickly from key -> value for any
key, just as a list maps from index -> value.

	Software design
	Parallel lists
	Counting words with lists
	Software engineering interlude: functions
	Back to word counting: updating our data structure
	Efficiency interlude

