
Structured representations

The dative alternation
In this assignment, we'll perform a simple study of the dative alternation. We already looked at important
factors that help predict the dative alternation in the R section of the course, but that data was already
processed into a CSV file. If you wanted to do a corpus study of your own, building that file would be your
first step.

We'll look at the kind of syntactic analysis you'd need to conduct such a study and see how to use the
NLTK library to implement it. NLTK offers custom libraries for working with a variety of formats you might
encounter in popular corpora (including XML and the Praat TextGrid format).

Simple formats
So far, we've gotten a lot done with datasets that are fairly simply formatted.

Alice in Wonderland was plain English text. Everything in the Alice file was part of the actual text of Alice
in Wonderland.

The Fisher dataset had a little more formatting. Fisher had lines like this:

56.38 61.03 A-f: i mean no money is very important definitely and a million dollars is a dream come true for me i mean
61.19 64.71 A-f: i can actually imagine the kind of things i can buy
64.41 65.38 B-f: yeah
65.57 69.14 A-f: travel and do whatever i want to in life but then again
69.61 70.13 A-f: i just
70.25 73.34 A-f: can't i mean stop talking to my best friend that's like

Not all the elements in these lines are part of the actual utterances, but you can tell data (the utterances)
from metadata (information about the utterances) by splitting things up based on spaces and looking at
positions. The dative alternation dataset you dealt with in R worked the same way.

The Penn Treebank
Not all datasets work well with this kind of simple format. For instance, what if you wanted to do a corpus
study of the dative alternation? You could just search for patterns like "give him a", "sell her the", etc. but
this approach has some disadvantages. (What are they?)

It would be nicer to work with syntax trees which represent the structure you're looking for directly. But
trees aren't quite as simple to write down.

We'll start off by looking at the most influential corpus of parsed English data, the Penn Treebank. The
Penn Treebank consists of about a million words of Wall Street Journal news articles with parse trees
hand-corrected by UPenn graduate students to make sure they're correct. It's a pretty good resource for
studies of common constructions like the dative alternation.

The Treebank uses a version of Principles-and-Parameters grammar that might strike some of you as
old-fashioned. But it's what we've got--- if you preferred to do your corpus study using some other
grammatical theory, you'd have to pay more graduate students to annotate more data, or try to
automatically translate the Treebank into your favorite notation. (People have done this for CCG and
HPSG, with some success.) For the most part, for corpus studies of constructions like dative alternation,
the different theories of syntax won't matter all that much.

Let's start out by downloading the Penn Treebank data and taking a look at it from the command line.
Using ls, it's straightforward to find that there are 24 directories, each one containing about 100 .mrg files.

What's in the files? Well, let's take a look:

$ more wsj_0001.mrg

((S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,))
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29))))
 (. .)))

Despite the fancy .mrg suffix, the files contain text data (not some kind of tricky binary encoding). But the
data is in a special format which gives the structure of the syntax tree. Each constituent in the tree is
contained within parentheses, in the format (LABEL child1 child2 child3...).

For instance, let's look at the noun phrase "61 years". In Penn Treebank notation, a noun phrase is
labeled NP, so we begin with a parenthesis, then the label NP. After that, we have the two children, "61",
which is labeled CD (cardinal number) and "years", which is labeled NNS (plural noun). And finally we
have the closing parenthesis.

"61 years" is itself part of the phrase "61 years old", which is an ADJP (adjectival phrase) that also
contains the JJ (adjective) "old".

Outside the tree is a final bracket with no label which contains the entire sentence.

Look at another tree in the data files and draw out a medium-sized subtree on paper. Does the Treebank
parse things the way you'd expect?

Reading the Treebank
In the next part of the unit, we're going to use a library to read in Treebank data and search it for datives.
But before we use the off-the-shelf solution, take a minute to think about how you'd read in Treebank trees
"by hand". How would you represent a tree as a Python data structure? What functions would you write to
read the text format and transform it into your data structure? Think it over before you go on.

Here's a simple proposal: represent the tree using Python lists, with a list for each constituent. For
instance, the adjective phrase would be:

["ADJP", ["NP", ["CD", "61"], ["NNS", "years"]], ["JJ", "old"]]

What are the advantages of this kind of structure? What are the disadvantages? How would you build it?

A Treebank reader
Although we won't spend any more time on the hand-built solution, you may want to glance over a
function that constructs it:

def readTree(text, ind, verbose=False):
 """The basic idea here is to represent the file contents as a long string
 and iterate through it character-by-character (the 'ind' variable

 points to the current character). Whenever we get to a new tree,
 we call the function again (recursively) to read it in."""
 if verbose:
 print("Reading new subtree", text[ind:][:10])

 # consume any spaces before the tree
 while text[ind].isspace():
 ind += 1

 if text[ind] == "(":
 if verbose:
 print("Found open paren")
 tree = []
 ind += 1

 # record the label after the paren
 label = ""
 while not text[ind].isspace() and text != "(":
 label += text[ind]
 ind += 1

 tree.append(label)
 if verbose:
 print("Read in label:", label)

 # read in all subtrees until right paren
 subtree = True
 while subtree:
 # if this call finds only the right paren it'll return False
 subtree, ind = readTree(text, ind, verbose=verbose)
 if subtree:
 tree.append(subtree)

 # consume the right paren itself
 ind += 1
 assert(text[ind] == ")")
 ind += 1

 if verbose:
 print("End of tree", tree)

 return tree, ind

 elif text[ind] == ")":
 # there is no subtree here; this is the end paren of the parent tree
 # which we should not consume
 ind -= 1
 return False, ind

 else:
 # the subtree is just a terminal (a word)
 word = ""
 while not text[ind].isspace() and text[ind] != ")":
 word += text[ind]
 ind += 1

 if verbose:
 print("Read in word:", word)

 return word, ind

if __name__ == "__main__":
 ff = open("/home/corpora/original/english/penn_treebank_3/parsed/mrg/wsj/00/wsj_0004.mrg")
 filetxt = "".join(ff.readlines())

 #read all the trees in a file
 ind = 0
 while ind < len(filetxt) - 1:
 tree, ind = readTree(filetxt, ind)
 print(tree)
 # print "new ind", ind

There are a few things you can learn from this program. One is that a sizable chunk of code like this can
be fairly difficult to understand! (Running it in verbose mode might make things a little easier to figure out.
Can you see how to do that?)

Another is the idea of recursion--- functions that call themselves. Recursion is a powerful mechanism for
computing complicated things. It allows the function to build up a tree made of subtrees, which are in turn
made of subtrees, and so on. (Of course, one has to avoid the "turtles all the way down" style of recursion
which never terminates; in this case, we stop when we reach the words.) Using recursion properly is
tricky, so we won't look any more closely at it for now.

Reading the Treebank with library functions
How would we find a library that deals with the Treebank data for us? Well, try googling "penn treebank
python"! You should get a bunch of pointers to the NLTK library, which is a large suite of tools for natural
language processing in Python.

Can you find out the names of the modules you need to use? What are some key functions?

One way to do read trees is with nltk.corpus.BracketParseCorpusReader. Take a look at the help text for
this module. Like str and list, BracketParseCorpusReader is an object. An object is a programming
abstraction for some data and associated methods. You can think of it as a kind of machine or device
stored in computer memory. To use an object, you construct it (make a device with the particular settings
you need) and then call its methods (use the device to do things).

For instance, you can make a string by writing it with quotes, or by using the str function on an object of
some other type:

>>> str(10)
'10'

And you can do things with the string you've just made, like split it, or replace part of it:

>>> "hello, world".replace("hello", "goodbye")
'goodbye, world'

Let's look at the help text again:

class BracketParseCorpusReader(nltk.corpus.reader.api.SyntaxCorpusReader)
 | Reader for corpora that consist of parenthesis-delineated parse
 | trees.
 |
 | Method resolution order:
 | BracketParseCorpusReader

file:///Users/mcdm/Documents/University/OSU/SVN_PAPERS/repository/LING5050/MODULE4/www.nltk.org
https://docs.python.org/3/tutorial/classes.html

 | nltk.corpus.reader.api.SyntaxCorpusReader
 | nltk.corpus.reader.api.CorpusReader
 | __builtin__.object
 |
 | Methods defined here:
 |
 | __init__(self, root, fileids, comment_char=None, detect_blocks='unindented_paren', encoding=None, tag_mapping_function=None)
 | :param root: The root directory for this corpus.
 | :param fileids: A list or regexp specifying the fileids in this corpus.
 | :param comment_char: The character which can appear at the start of
 | a line to indicate that the rest of the line is a comment.
 | :param detect_blocks: The method that is used to find blocks
 | in the corpus; can be 'unindented_paren' (every unindented
 | parenthesis starts a new parse) or 'sexpr' (brackets are
 | matched).
 |

The __init__ function constructs a BracketParseCorpusReader; don't worry about the first argument (self),
which is a placeholder for the reader you're trying to make. The documents do reveal that a
BracketParseCorpusReader takes the name of a directory and a list of files, or a regular expression that
matches these files. (Remember regular expressions from grep? This is one of the rare cases in which
using one doesn't create more problems than it solves.)

Let's try this out:

import nltk.corpus

def parsedSents(wsjDir):
 reader = nltk.corpus.BracketParseCorpusReader(wsjDir, ".*/.*\.mrg")
 return reader.parsed_sents()

if __name__ == "__main__":
 wsj = "/home/corpora/original/english/penn_treebank_3/parsed/mrg/wsj"

 trees = parsedSents(wsj)
 for ti in trees:
 print(ti)

The critical line is: reader = nltk.corpus.BracketParseCorpusReader(wsjDir, ".*/.*\.mrg") which constructs
the reader object. The first argument is the directory path and the second is a regular expression. What
does it match? Why is this useful?

Once we've constructed the reader, we use its parsed_sents method to return all the sentences in the
corpus. As you've already seen, object methods use the object.method(args) syntax;
BracketParseCorpusReader is no exception.

What does this program print when you run it? What is the type of the objects in the trees structure? How
can you find out more about this type?

Trees!
To figure out a little bit more about the Tree class, let's look at a smaller tree close up. Start out by
creating the following data file

((S (NP (DT the) (NN cat))
 (VP (VBD sat)
 (PP (IN on)
 (NP (DT the) (NN mat))
))
))

We'll use the following lines to read it in:

>>> import nltk.corpus
>>> reader = nltk.corpus.BracketParseCorpusReader(".", ".*mrg")
>>> reader.parsed_sents()[0]
Tree('S', [Tree('NP', [Tree('DT', ['the']), Tree('NN', ['cat'])]), Tree('VP', [Tree('VBD', ['sat']),
Tree('PP', [Tree('IN', ['on']), Tree('NP', [Tree('DT', ['the']), Tree('NN', ['mat'])])])])])
>>> tree = reader.parsed_sents()[0]

Reading the documentation, we can see that a Tree has a bunch of different methods that do various
things. Among them, we can find the label at a node of the tree, the children below that node, and the list
of words at the terminals. How do we do these things?

>>> tree.label()
'S'
>>> tree[0]
Tree('NP', [Tree('DT', ['the']), Tree('NN', ['cat'])])
>>> tree[1]
Tree('VP', [Tree('VBD', ['sat']), Tree('PP', [Tree('IN', ['on']),
Tree('NP', [Tree('DT', ['the']), Tree('NN', ['mat'])])])])
>>> tree.leaves()
['the', 'cat', 'sat', 'on', 'the', 'mat']

A Tree is made up of more Tree--- for instance, the first child of the first child is tree[0][0]. What is this?
(You can also write Tree[0,0]; this is a special feature of the Tree class and doesn't work on regular lists.)

Interlude: syntax
We could immediately launch ourselves into playing with the Tree class and exploring all its many
capabilities. But before we immerse ourselves in low-level details, let's switch back to linguist mode and
think about what we want our program to eventually do. We'd like to find sentences which contain double
object ("give him a ball") and prepositional ("give a ball to her") dative constructions.

Suppose we could build some kind of "dative detector" function--- actually two functions, one for double
object and one for prepositional datives. We'd run these on each sentence in the treebank and print out
the matches for further analysis. For instance, we could print out factors like the identity of the verb, or
whether the recipient was a pronoun, and then do statistical analysis of the relationships between them.

What would this dative detector have to do? Think of some examples of double object datives and
prepositional datives yourself. What do you think their trees would look like?

To develop a program of this type, I'd normally put together a scratch file containing a few possible targets
and non-targets and use this for initial testing. To do so, I'd search the corpus files for obvious cases using
less or a word processor. (How do you search for things in less? Type the forward slash / and then a
string--- actually, a regular expression--- to search for.)

What should we search for to maximize our chances of finding datives?

Here are a couple of sentences I found (and simplified) from the corpus:

 ((S
 (NP-SBJ
 (NP (NNS Plans))
 (SBAR
 (WHNP-13 (WDT that))
 (S
 (NP-SBJ (-NONE- *T*-13))
 (VP (VBP give)
 (NP (NNS advertisers))
 (NP
 (NP (NNS discounts))

 (PP (IN for)
 (S-NOM
 (NP-SBJ (-NONE- *))
 (VP (VBG maintaining) (CC or) (VBG increasing)
 (NP (NN ad) (NN spending))))))))))
 (VP
 (VP (VBP have)
 (VP (VBN become)
 (NP-PRD
 (NP (JJ permanent) (NNS fixtures))
 (PP-LOC (IN at)
 (NP (DT the) (NN news) (NNS weeklies)))))))))

((S
 (NP-SBJ-3 (NNS teachers))
 (VP
 (ADVP-TMP (RB sometimes))
 (VB give)
 (PRT (RP away))
 (NP (DT a) (JJ few) (JJ exact) (NNS questions)
 (CC and)
 (NNS answers)))
 (. .)))

((S
 (NP-SBJ-1 (DT The) (NN show))
 (VP (VBD did) (RB n't)
 (VP (VB give)
 (NP
 (NP (DT the) (NNS particulars))
 (PP (IN of)
 (NP
 (NP (NNP Mrs.) (NNP Yeargin) (POS 's))
 (NN offense))))
)) (. .)))

((SINV
 (S-TPC-2
 (NP-SBJ-1 (DT The) (NN deal))
 (VP (VBZ is)
 (ADVP (RB chiefly))
 (VP (VBN designed)
 (NP-3 (-NONE- *-1))
 (S-CLR
 (NP-SBJ (-NONE- *-3))
 (VP (TO to)
 (VP (VB give)
 (NP (NNP Mitsubishi))
 (NP
 (NP (DT a) (NN window))
 (PP-LOC (IN on)
 (NP (DT the) (NNP U.S.) (NN glass) (NN industry)))))))))
 (, ,))
 (VP (VBZ says)
 (S (-NONE- *T*-2)))
 (NP-SBJ

 (NP (NNP Ichiro) (NNP Wakui)))))

((S
 (NP-SBJ (DT The) (NNP ABA))
 (VP (VBZ gives)
 (NP (DT a) (`` ``)
 (ADJP (VBN qualified))
 ('' '') (VBG rating))
 (PP-DTV (TO to)
 (NP
 (NP (NNS nominees)))))))

((S
 (NP-SBJ-2
 (NP (NNP Mr.) (NNP Dingell) (POS 's))
 (NN staff))
 (VP (VBD was)
 (VP (VBN expected)
 (S
 (NP-SBJ (-NONE- *-2))
 (VP (TO to)
 (VP (VB present)
 (NP (PRP$ its) (NN acid-rain) (NN alternative))
 (PP-DTV (TO to)
 (NP (JJ other) (NN committee) (NNS members))))))))))

Which ones are double object datives? Which ones are the prepositional datives? Which ones aren't
datives at all?

Let's put these in a file (call it "testfile.mrg") and then build a program that can find the constructions we're
looking for.

Detecting datives
Ok, let's try this out. We'll start off with NP-PP datives. From your analysis of the corpus, you've probably
figured out that these have a VP containing an NP followed by a PP-DTV. Let's build a function, ppDative,
that detects this configuration:

def ppDative(tree):
 #return True if tree contains a prepositional dative
 #(code goes here)
 return True

If you have some idea of how to start out building this, go ahead and do it on your own. If not, keep
reading.

My target configuration starts off with a VP, so I want to check all the subtrees and see which ones are
VPs. I hunt through the NLTK documentation and find the subtrees function--- this looks useful!

| subtrees(self, filter=None)
| Generate all the subtrees of this tree, optionally restricted
| to trees matching the filter function.
|
| >>> t = Tree("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
| >>> for s in t.subtrees(lambda t: t.height() == 2):
| ... print s

| (D the)
| (N dog)
| (V chased)
| (D the)
| (N cat)
|
| :type filter: function
| :param filter: the function to filter all local trees

Using this, write some code that finds all the VP nodes and prints them out. (There are two ways to do
this. I did it the syntactically simpler way, but you can use the filter function argument if you like.) The
answer is below if you can't figure it out.

def ppDative(tree):
 for st in tree.subtrees():
 if st.label() == "VP":
 print("matched vp", st)

Now we want to find out if the node has an NP child followed by a PP-DTV child. To find out, we can use a
for loop over the children:

for ch in range(len(st) - 1):
 if (st[ch].label().startswith("NP") and
 st[ch + 1].label() == "PP-DTV"):
 print("matched dative", st)

Look at the output. Does it do what you expect? Add a return True statement and see whether you get the
right cases.

My program so far looks like this:

import nltk.corpus

def parsedSents():
 reader = nltk.corpus.BracketParseCorpusReader(".", "testfile.mrg")
 return reader.parsed_sents()

def ppDative(tree):
 for st in tree.subtrees():
 if st.label() == "VP":
 #print("matched vp", st)

 for ch in range(len(st) - 1):
 if (st[ch].label().startswith("NP") and
 st[ch + 1].label() == "PP-DTV"):
 #print("matched dative", st)
 return True

trees = parsedSents()
for t in trees:
 print(" ".join(t.leaves()))
 if ppDative(t):
 print("\tPrepositional dative")

And prints this:

Plans that *T*-13 give advertisers discounts for * maintaining or increasing ad spending have become permanent fixtures at the news weeklies

teachers sometimes give away a few exact questions and answers .

The show did n't give the particulars of Mrs. Yeargin 's offense .

The deal is chiefly designed *-1 *-3 to give Mitsubishi a window on the U.S. glass industry , says *T*-2 Ichiro Wakui

The ABA gives a `` qualified '' rating to nominees
 Prepositional dative

Mr. Dingell 's staff was expected *-2 to present its acid-rain alternative to other committee members
 Prepositional dative

Looks ok. Let's try the double object dative. My target pattern here is NP followed by NP under VP. I come
up with the following:

def npDative(tree):
 for st in tree.subtrees():
 if st.label() == "VP":
 #print("matched vp", st)

 for ch in range(len(st) - 1):
 if (st[ch].label().startswith("NP") and
 st[ch + 1].label() == "NP"):
 # print("matched dative", st)
 return True

What are the results like on our sample file?

Iterative debugging
Since it seems to work out okay, let's try it out on the treebank. This will spew a lot of output very quickly.
To scroll through it line by line, we can pipe it to less. Remember that the pipe "|" takes the output of one
program and redirects it to another. (And if you forget what less does, you can check the manual!)

$ python3 dativeDetector.py | less

Scroll through the output and look for prepositional datives:

Then , just as an image of the statue of Thomas Jefferson dissolves from the screen , the announcer continues :
`` On the issue of abortion , Marshall Coleman wants *-1 to take away your right * to choose and *-1 give it
to the politicians . ''
 Prepositional dative
While *-1 giving the Comprehensive Test of Basic Skills to ninth graders at Greenville High School last March 16 ,
she spotted a student looking at crib sheets .
 Prepositional dative
Worksheets in a test-practice kit called * Learning Materials , sold * to schools across the country by
Macmillan\/McGraw-Hill School Publishing Co. , contain the same questions .
 Prepositional dative
`` It 's as if France decided *-1 to give only French history questions to students in a European history class ,
and when everybody aces the test *T*-3 , they say 0 their kids are good in European history , '' says *T*-2 John Cannell ,
an Albuquerque , N.M. , psychiatrist and founder of an educational research organization , Friends for Education ,
which *T*-105 has studied standardized testing .
 Prepositional dative

Three of these hits look good:

• "take your right to choose and give it to politicians",

• "giving the Test of Basic Skills to ninth graders",

• and "give only French history questions to students".

But one of them isn't so good: "Worksheet sold to schools" is a passive construction. Does this
construction have a corresponding double object dative?

What about the double object dative? Does this also have a problem with passives?

Here's a corresponding case:

At Cray Computer , he will be paid *-26 $ 240,000 *U* .

We'll need to detect passive sentences so we can filter them out (or, if we prefer, to report them but mark
them with a special feature so we don't analyze them as if they were active).

So let's look at some trees for our problem cases:

(NP-SBJ
 (NP (NNS Worksheets))
 (PP-LOC
 (IN in)
 (NP
 (NP
 (NP (DT a) (JJ test-practice) (NN kit))
 (VP
 (VBN called)
 (S
 (NP-SBJ (-NONE- *))
 (NP-PRD-TTL (NNP Learning) (NNPS Materials)))))
 (, ,)
 (VP
 (VBN sold)
 (NP (-NONE- *))
 (PP-DTV
 (TO to)
 (NP
 (NP (NNS schools))
 (ADVP-LOC (IN across) (NP (DT the) (NN country)))))
 (PP
 (IN by)
 (NP-LGS
 (NNP Macmillan\/McGraw-Hill)
 (NNP School)
 (NNP Publishing)
 (NNP Co.))))
(, ,))))

(S
 (PP-LOC (IN At) (NP (NNP Cray) (NNP Computer)))
 (, ,)
 (NP-SBJ-26 (PRP he))
 (VP
 (MD will)
 (VP
 (VB be)
 (VP
 (VBN paid)
 (NP (-NONE- *-26))
 (NP ($ $) (CD 240,000) (-NONE- *U*)))))
 (. .))

Can you spot the issue?

According to the transformational grammar formalism of the Treebank, these passive sentences contain
an empty node marking the position one of the arguments would occupy in the corresponding active
sentence. We should be able to filter these cases by ensuring the NPs we detect are non-empty.

def nonNullNP(tree):
 return tree.label().startswith("NP") and tree[0].label() != "-NONE-"

def ppDative(tree):
 for st in tree.subtrees():
 if st.label() == "VP":
 #print("matched vp", st)

 for ch in range(len(st) - 1):
 if (nonNullNP(st[ch]) and st[ch + 1].label() == "PP-DTV"):
 #print("matched dative", st)
 return True

def npDative(tree):
 for st in tree.subtrees():
 if st.label() == "VP":
 #print("matched vp", st)

 for ch in range(len(st) - 1):
 if nonNullNP(st[ch]) and nonNullNP(st[ch + 1]):
 # print("matched dative", st)
 return True

Does this fix our problem with passives? How are we doing now?

Under the stars and moons of the renovated Indiana Roof ballroom , nine of the hottest chefs
in town fed them Indiana duckling mousseline , lobster consomme , veal mignon and chocolate
terrine with a raspberry sauce .
 Shifted dative
*-2 Knowing a tasty -- and free -- meal when they eat one *T*-1 , the executives gave
the chefs a standing ovation .
 Shifted dative
Plans that *T*-13 give advertisers discounts for * maintaining or increasing ad spending have
become permanent fixtures at the news weeklies and underscore the fierce competition between
Newsweek , Time Warner Inc. 's Time magazine , and Mortimer B. Zuckerman 's U.S. News & World
Report .
 Shifted dative
The monthly sales have been setting records every month since March .
 Shifted dative

Again, the first few look good, but then the next one isn't a dative.

(S
 (NP-SBJ (DT The) (JJ monthly) (NNS sales))
 (VP
 (VBP have)
 (VP
 (VBN been)
 (VP
 (VBG setting)
 (NP (NNS records))
 (NP-TMP
 (NP (DT every) (NN month))
 (PP (IN since) (NP (NNP March)))))))
 (. .))

Oops! The second NP had better not be some kind of adjunct. I'll exclude NP nodes with a function tag,
like NP-TMP:

def nonNullNP(tree):
 #used to be startswith("NP") but this allows adjuncts
 return tree.label() == "NP" and tree[0].label() != "-NONE-"

The lesson so far is that we can tune the program iteratively--- we look at what it predicts, check whether
we get what we want, and then change things to exclude the false positives.

False negatives?
The results look good to me now. Of course, I'm just looking at the sentences which are detected as
containing a dative. It's possible the program is failing to detect some actual datives. Obviously we can't
look at the entire treebank to figure out whether the detector is missing datives, so we'll have to do
something more approximate. Any suggestions?

One possibility is to look at a subset of the data which is likely to have a lot of datives. Let's just inspect
sentences using the verb give.

Modify your program to run only on sentences for which the verb give appears somewhere. (Don't worry
about different forms of the verb. The aim is to test our code by extracting some sample sentences which
might have datives, not to learn anything about this verb in particular.)

Plans that *T*-13 give advertisers discounts for * maintaining or increasing ad spending
have become permanent fixtures at the news weeklies and underscore the fierce competition
between Newsweek , Time Warner Inc. 's Time magazine , and Mortimer B. Zuckerman 's U.S.
News & World Report .
 Shifted dative

In Robert Whiting 's `` You Gotta Have Wa '' -LRB- Macmillan , 339 pages , $ 17.95 *U* -RRB- ,
the Beatles give way to baseball , in the Nipponese version 0 we would be hard put *-2 to call
T-1 a `` game . ''
 No dative

Then , just as an image of the statue of Thomas Jefferson dissolves from the screen , the
announcer continues : `` On the issue of abortion , Marshall Coleman wants *-1 to take away
your right * to choose and *-1 give it to the politicians . ''
 Prepositional dative

By *-3 using them , teachers -- with administrative blessing -- telegraph to students beforehand
the precise areas on which a test will concentrate *T*-1 , and sometimes give away a few exact
questions and answers .
 No dative

The show did n't give the particulars of Mrs. Yeargin 's offense , *-1 saying only that she helped
students do better on the test .
 No dative

These days , students can often find the answer in test-coaching workbooks and worksheets 0 their
teachers give them *T*-1 in the weeks prior to * taking standardized achievement tests .
 No dative

`` It 's as if France decided *-1 to give only French history questions to students in a European
history class , and when everybody aces the test *T*-3 , they say 0 their kids are good in European
history , '' says *T*-2 John Cannell , an Albuquerque , N.M. , psychiatrist and founder of an
educational research organization , Friends for Education , which *T*-105 has studied standardized
testing .
 Prepositional dative

The reason : the refusal *ICH*-1 of Congress * to give federal judges a raise .
 Shifted dative

*-2 Founded *-1 by Brooklyn , N.Y. , publishing entrepreneur Patricia Poore , Garbage made its debut
this fall with the promise * to give consumers the straight scoop on the U.S. waste crisis .
 Shifted dative

He predicted that the board would give the current duo until early next year before * naming a
new chief executive .
 No dative

What do you think about these cases? Anything suspicious?

What are your feelings on "give way", or on the relative clause structure of "workbooks their teachers give
them"? (Notice that the second case actually permits the alternate PP syntax "give to them". But even so,
I'm not sure this case is worth searching for.) What about "give until early next year"?

Can you find any more troublesome cases?

Analysis
Now we've got a dative detector, what do we do with it? We could construct an elaborate study of the
dative alternation--- but considering we already did one in the previous module, we'll settle for something
simpler: printing the list of verbs that occur with datives and their counts in a neat table.

In order to get this to work, we'll need to come up with a way to find the head verb of each dative
construction. Modify your ppDative and npDative functions so they return this information.

What data structure shall we use to store the counts? How does this relate to speaker genders in Fisher?

If I sort the counts by verbs which take the most dative constructions, the top lines of my table look like
this:

give PP: 31 0.167567567568 NP: 154 0.832432432432
sell PP: 69 0.958333333333 NP: 3 0.0416666666667
gives PP: 7 0.112903225806 NP: 55 0.887096774194
gave PP: 17 0.283333333333 NP: 43 0.716666666667
giving PP: 16 0.301886792453 NP: 37 0.698113207547
pay PP: 11 0.297297297297 NP: 26 0.702702702703
sold PP: 29 0.966666666667 NP: 1 0.0333333333333
cost PP: 0 0.0 NP: 26 1.0
given PP: 1 0.0434782608696 NP: 22 0.95652173913
paid PP: 8 0.4 NP: 12 0.6
awarded PP: 11 0.611111111111 NP: 7 0.388888888889
sent PP: 7 0.411764705882 NP: 10 0.588235294118
offering PP: 5 0.3125 NP: 11 0.6875
offer PP: 7 0.466666666667 NP: 8 0.533333333333
selling PP: 12 1.0 NP: 0 0.0
provide PP: 6 0.545454545455 NP: 5 0.454545454545
offered PP: 3 0.3 NP: 7 0.7

Which verbs prefer PP-datives? Which prefer NP-datives?

	The dative alternation
	Simple formats
	The Penn Treebank
	Reading the Treebank
	A Treebank reader
	Reading the Treebank with library functions

	Trees!
	Interlude: syntax
	Detecting datives
	Iterative debugging
	False negatives?
	Analysis

