
Introduction to Python (part 2)

Processing a sentence

Writing a Python script
We're now in a position to do some actual work on our problem... at least on a single sentence! Rather
than do this all at the Python prompt, where it's kind of ephemeral, we'll write down our work in a script file
so that we can run it over and over.

To start with, create a file named sentence.py in your editor. We'll start by putting a simple Python
command into this file so we can tell if it's running properly. By convention, this line will be:

print("hello world")

(You can try this out at the interactive prompt first, if you feel like it.) Save the file. Now open up a terminal
and try the following:

$ python3 sentence.py
hello world

Once you've gotten this working, we can start counting the words in our sentence. We can start with this
code:

print("Here are all the words", "B-f: I'm in graduate school".split())
print("the sentence has", len("B-f: I'm in graduate school".split()), "words")

When we run this, we get the following:

$ python3 sentence.py
Here are all the words ['B-f:', "I'm", 'in', 'graduate', 'school']
the sentence has 5 words

Variables
Typing the sentence over and over makes our code difficult to adapt to a new sentence. We can make our
code more flexible and easier to read using variables (covered by the official tutorial back in the section
on numbers). A variable is a name which you link to some piece of data in memory. Its value is then that
piece of data. The equal sign (=) assigns a value to a variable.

>>> sentence = "B-f: I'm in graduate school" #assign string to sentence variable
>>> sentence #check value of sentence variable; will get string
"B-f: I'm in graduate school"

Let's go back to our script. We'll create some variables, sentence and words, to make things shorter and
simpler.

sentence = "B-f: I'm in graduate school" #the sentence we're analyzing
words = sentence.split() #a list of the words

print("Here are all the words", words)

speaker = words[0]

http://docs.python.org/3/tutorial/introduction.html#numbers

actualWords = words[1:] #everything after the speaker

print("the sentence is spoken by", speaker)
print("their actual utterance was", actualWords)
print("the sentence has", len(actualWords), "words")

This script does a lot of the analysis we need for the male/female study... for a single utterance, anyway.
To deal with multiple utterances, we'll need to learn some more sophisticated programming tools. But
before we go on, we'll add one more utterance to the program to get an idea of how the full-scale case
should look.

To do so, we'll copy and paste the code we already used. When we execute the first line, sentence is
assigned a new value, "B-f: yeah I can hear you", which overwrites the old value. Now words is assigned
a new value (the list of words from the new sentence). The rest of the code works just as before.

#-----------processing sentence 2---------------------

sentence = "B-f: yeah i can hear you" #another sentence
words = sentence.split() #change value to words of sentence 2

print("Here are all the words", words)
...

We can collect some statistics grouping both sentences together. To do so, we'll create two variables,
totalWordsSpoken and totalUtterances, which will be numbers. As we analyze each sentence, we'll
update our running totals to account for the data from that sentence.

To keep track of a running total, we need two ingredients. First, we set the total to 0. And then, we add
each term on to the total. Notice that we can use the same variable to do this each time:

>>> total = 0
>>> total
0
>>> total = total + 3 #equiv. 0 + 3
>>> total
3
>>> total = total + 2 #equiv. 3 + 2
>>> total
5

The pattern x = x + y occurs so often in programs like this that Python provides an abbreviation for it: +=: x
+= y means x = x + y. So, for instance, when we want to update our total number of words to include the
most recent utterance, we can do this.

totalWordsSpoken += len(actualWords)

(By the way, += is just a labor-saving device. There's nothing wrong with continuing to write out the full
sum if you're worried you'll forget what it means. Python has a lot of similar labor-saving abbreviations. It's
often good programming style to use them, since it can make your code easier for an experienced
programmer to read, but you should never feel required to use something you find confusing.)

Program structure
The full program looks like this:

#------------initialization of tracking variables-------------------
totalWordsSpoken = 0
totalUtterances = 0

#-----------processing sentence 1---------------------

sentence = "B-f: I'm in graduate school" #the sentence we're analyzing
words = sentence.split() #a list of the words

print("Here are all the words", words)

speaker = words[0]
actualWords = words[1:] #everything after the speaker

print("the sentence is spoken by", speaker)
print("their actual utterance was", actualWords)
print("the sentence has", len(actualWords), "words")

totalWordsSpoken += len(actualWords)
totalUtterances += 1

#-----------processing sentence 2---------------------

sentence = "B-f: yeah i can hear you" #another sentence
words = sentence.split() #change value to words of sentence 2

print("Here are all the words", words)

speaker = words[0]
actualWords = words[1:] #everything after the speaker

print("the sentence is spoken by", speaker)
print("their actual utterance was", actualWords)
print("the sentence has", len(actualWords), "words")

totalWordsSpoken += len(actualWords)
totalUtterances += 1

#---------done with all the sentences; post-analysis----------

print("the total number of words spoken was", totalWordsSpoken)
print("the total number of utterances was", totalUtterances)
print("the average number of words per utterance was",
 totalWordsSpoken / totalUtterances)

The program has a fairly typical structure for this kind of analysis. There's an initialization block at the
beginning which sets up our running total variables. Next, there's a processing block which we run once
for each sentence. This block is just copied over and over, once per data item; the only thing that changes
is the sentence itself. The processing block is responsible for computing the quantity of interest (words in
the sentence) and adding it to the appropriate total variable. Finally, there's an analysis block at the end
which uses our running totals to compute something of interest and print it out.

When we run the program, we see this:

$ python3 sentence.py
Here are all the words ['B-f:', "i'm", 'in', 'graduate', 'school']

the sentence is spoken by B-f:
their actual utterance was ["i'm", 'in', 'graduate', 'school']
the sentence has 4 words
Here are all the words ['B-f:', 'yeah', 'i', 'can', 'hear', 'you']
the sentence is spoken by B-f:
their actual utterance was ['yeah', 'i', 'can', 'hear', 'you']
the sentence has 5 words
the total number of words spoken was 9
the total number of utterances was 2
the average number of words per utterance was 4.5

We can see which output comes from which block.

$ python3 sentence.py
 <----initialization ran here and didn't print anything
 <----processing sentence 1 started here
Here are all the words ['B-f:', "i'm", 'in', 'graduate', 'school']
the sentence is spoken by B-f:
their actual utterance was ["i'm", 'in', 'graduate', 'school']
the sentence has 4 words
 <----processing sentence 1 ended here
 <----processing sentence 2 started here
Here are all the words ['B-f:', 'yeah', 'i', 'can', 'hear', 'you']
the sentence is spoken by B-f:
their actual utterance was ['yeah', 'i', 'can', 'hear', 'you']
the sentence has 5 words
 <----processing sentence 2 ended here
 <----postprocessing started here
the total number of words spoken was 9
the total number of utterances was 2
the average number of words per utterance was 4.5
 <----program end

This "block" structure isn't actually part of the Python language; it's not something the computer keeps
track of while it's running your script. It's part of our mental representation of the program. But thinking
about the program this way will be very important when we extend it to deal with the full dataset.

Processing a file
At the moment, our program runs on only two sentences, and we had to write these into the code by hand.
That isn't very useful. In order to solve our problem, we'll need to do the following things:

• Allow the program to process any number of sentences.

• Read the sentences in from a file.

• Keep track of the number of words by gender, not just the overall total.

The for loop
The solution to the first problem is called a loop and we'll start by covering that.

The most common (and useful) Python loop is the for loop. It has the following syntax:

for [variable] in [list]:
 [statements]

http://docs.python.org/3/tutorial/controlflow.html#for-statements

For every item in list, the for loop sets variable equal to that item and then runs all the statements. Here's
an example:

for number in [1, 2, 3]:
 number *= 2
 print(number)

What does this print? You can create equivalent code using the copy-and-paste method.

#--------processing 1----------
number = 1
number *= 2
print(number)

#--------processing 2----------
number = 2
number *= 2
print(number)

#--------processing 3----------
number = 3
number *= 2
print(number)

Notice that the statements under for have to be indented. Python uses this indentation to keep track of
your program's structure, so it's important to get it right. If you had instead typed:

for number in [1, 2, 3]:
 number *= 2
print(number)

The program would be equivalent to:

#--------processing 1----------
number = 1
number *= 2

#--------processing 2----------
number = 2
number *= 2

#--------processing 3----------
number = 3
number *= 2

#--------after the loop--------
print(number)

It's possible (but slightly annoying) to try out for loops in the interpreter. When you type the beginning of
the loop, you get a ... prompt instead of the normal >>> prompt.

>>> for number in [1, 2, 3]:
...

You then need to produce the indentation (you can use the space bar, but the tab key is probably neater).

>>> for number in [1, 2, 3]:
... print(number)
...

When you're ready to end the for loop, hit return and the whole loop will execute, after which the normal
>>> prompt will reappear.

Exercise
With this in mind, use a for loop to simplify our sentence.py script from above. The idea should be to
replace the two copies of the processing block with a single copy inside a loop. To do this, you'll need to
create a list containing the two sentences, write a for loop operating over this list, and put the processing
block inside that loop. I won't show the code, but don't go on until you can do this.

File handling
At the moment, we've got our program working, but only on sentences we write into the code by hand. To
read files from the corpus directory, we'll need to understand a bit about Python's tools for dealing with
files.

A Python file object is a datatype, like string or int. It's possible to do all sorts of things with a file object,
but we'll only cover the most basic file operation for now--- reading each line in order.

The first thing to do with your file is open it. Open is a Python function which takes the name of the file
(also called its path) and returns a file object connected to that file. You can think of the file object as if it
were an old-fashioned cassette tape player into which you load the actual file in computer memory like a
tape. Once the tape is loaded into the player, you can play the content, going forward until you get to the
end--- and then you're done. You'd need to rewind the tape to get back to the beginning. Of course, the
contents of the tape itself (the actual file on the disk) are still all there.

We can test out valid file names to use in our program by checking them with ls at the Unix command line.
Python understands both absolute paths (starting with a /, as in /home/YOURNAME/ling/example.txt) and
relative paths from the current directory (no /, or ./, as in example.txt). The only thing ls understands that
Python doesn't is the ~ abbreviation for your home directory--- don't use this in computer code.

For now, our example filename will be Fisher/065/fe_03_06500.txt. I've got this in my current directory,
which I can check...

$ ls Fisher/065/fe_03_06500.txt
Fisher/065/fe_03_06500.txt

But of course you might have it somewhere else. Make sure you have a proper path to this file before
going on.

Now let's open our file object:

>>> fisherFile = open("Fisher/065/fe_03_06500.txt")
>>> fisherFile
<_io.TextIOWrapper name='Fisher/065/fe_03_06500.txt' mode='r' encoding='UTF-8'>

The type of the filename is a string (in double quotes); the type of the file object is _io.TextIOWrapper (but
file object is easier to say).

The file object is now connected to the actual file on disk... but how do we get at the contents? There are
several ways to do this. But the easiest is to write a for loop. Just like a list, a file can be used inside a for
loop.

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

>>> for line in fisherFile:
... print(line)
...
0.33 2.13 B-m: ((hi how's it going))
<ETC>

This loop will spew the entire contents of the file to your screen. Once the contents of the file has been
consumed (the cassette tape player is at the end of the tape), it stops. If you try writing the same loop
again, you get nothing. In order to get the whole thing to work again, open the file again. The new file
object is connected to the file at the beginning, and the for loop will work just as before.

What if the file can't be found? Well, then you get an error.

>>> fisherFile = open("nonexistent")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory: 'nonexistent'

When this happens, use ls to try to figure out what's going on. Remember that relative paths care about
what directory you're in when you run the Python program, so if ls works and your code doesn't, you might
be running them from different places.

Use what you've learned to rewrite your program so that it counts all the words in the example file. The
lines in the actual Fisher data have two extra fields which are timestamps, before the speaker, so you'll
also need to change some indices to make sure these don't get counted as words.

Decision-making with if
Now that we can process a whole file, we can actually start to figure out something about gender. To start
off with, we'll need some new tracking variables, one set per gender.

#------------initialization of tracking variables-------------------
totalWordsM = 0 #words spoken by men
totalUtterancesM = 0
totalWordsF = 0 #words spoken by women
totalUtterancesF = 0

The missing piece here, of course, is that inside the processing block, we'll need to make a decision--- if
the sentence is spoken by a man, we need to update totalWordsM, but if it is spoken by a woman, we
instead need to update totalWordsF.

Python allows you to make this decision using the if statement. It has the following syntax:

if [condition]:
 [statements]

Just like for, if has a line ending with a colon, and then an indented block of statements which it controls.
In this case, the statements execute if condition is true.

In Python, truth values have a type of their own, bool (short for Boolean, from the logician George Boole).
There are two of them: True and False. Thus, the simplest if statements are:

>>> if True:
... print("most things will never happen; this one will")
...
most things will never happen; this one will

https://docs.python.org/3/tutorial/controlflow.html#if-statements

>>> if False:
... print("this one won't")
...
>>>

Of course, these statements are rather trivial--- why write a statement that can never be executed?
Luckily, Python has a variety of logical operators whose value is a bool.

Comparisons
The most important set of operators with boolean values are the comparison operations. These are <
(less), == (equal) and > (greater). (Why ==? We're already using the single equals sign for variable
assignment, as in sentence = "hello world", and using it for both would be confusing. Luckily, if you try to
use the wrong one, you usually get an error.)

>>> 1 == 1
True
>>> 1 < 5
True
>>> 1 > 5
False

These operators also work on non-numerical data:

>>> "cat" == "cat"
True
>>> [1, 2, 3] == [1, 2]
False

For these data types, <-style comparisons usually get you alphabetical (lexicographic) order. For instance:

>>> "anna" < "cat"
True
>>> ["beta", "gamma"] > ["beta", "alpha", "zebra"]
True

There are also some compound operators for your convenience: <= (less than or equal), >= (greater than
or equal) and != (not equal). Once you're used to the basic comparisons, it's easy to figure out what these
do.

Logic
You can also do logic with booleans. Python provides three logical operators, and, or and not. These do
what you think they do.

>>> True and False
False

Of course, you can also use these operators with expressions whose value is boolean.

>>> not (5 > len("you are a cat".split()) and [1, 2, 3][2] < 4)

What does this print? Why?

Using 'if' to check the gender
Now we know how to get boolean values, we can use if to assign the word counts to the correct
gender-based variable. Let's think about the speaker values again--- currently, our program prints out
lines like:

the sentence is spoken by B-f:

We want to know what the third letter of this string is... and we can find that out using the brackets
notation, just as if the string were a list. What number do we have to write?

Now we need some code of the form:

if [that letter] == "f": #check if that letter is the string 'f'
 [add stuff to the female totals]

Obviously, we can do exactly the same thing for the men (except changing the string "f" to "m", or "==" to
"!="). Again, there's a shortcut... Python's else keyword. This has the syntax:

if [condition]:
 #this stuff happens only if *condition* is True
 [statements]
else:
 #this stuff happens only if *condition* is False
 [other statements]

else can make your code easier to read, but you don't have to use it. Either way, make your code
compute all the total variables correctly and then run it.

For this example file, my code prints:

the total number of words spoken by women was 1061
the total number of utterances by women was 121
the average number of words per utterance was 8.768595041322314
the total number of words spoken by men was 809
the total number of utterances by men was 126
the average number of words per utterance was 6.420634920634921

So it looks like this particular female speaker talks a little bit more than her male counterpart. Of course,
this is a single datapoint--- not a full analysis of the problem!

Processing multiple files
Think about what you'll need to do to make the program run over multiple files. There are two missing
pieces:

• Figure out the list of files to run on

• Write another loop to process each one in turn

In just a second, we'll figure out how to do these problems... but what would you do if you were on your
own? Use the internet!

Try googling a solution to the file listing problem. Did you find one?

Searching for python list directory contents gets this link as the first result:
<http://stackoverflow.com/questions/2759323/how-can-i-list-the-contents-of-a-directory-in-python> And
the top-rated answer is correct

import os
os.listdir("path") # returns list

But let's spend a few minutes understanding why it's correct.

Modules
Python supplies a variety of libraries called modules which contain extra functionality you might want to
use. Some of these are built in; others are developed independently and have to be installed. And you can
also write your own!

To use a Python module, you import it:

>>> import os

import allows you to use the functions defined in the module. You have to prefix them with the module
name to make it clear where they come from. For instance, now that you've imported os, you can use the
os.listdir function. This also allows you to obtain help.

>>> help(os.listdir)

Help on built-in function listdir in module posix:

listdir(...)
 listdir([path]) -> list_of_strings

 Return a list containing the names of the entries in the directory.

 path: path of directory to list (default: '.')

 The list is in arbitrary order. It does not include the special
 entries '.' and '..' even if they are present in the directory.

This gives us some understanding of the listdir function; we give it a path (like
/Users/<YOURNAME>/Ling5050) and it gives back a list of strings which are the names of files in the
directory.

>>> os.listdir("/Users/mcdm/Downloads/Fisher")
['058', '065']

You could use this function to build an ls program if you wanted. But instead, try using it to get a list of all
the files in Fisher/065 so we can process them with our gender counting program.

As a side note, if the module name is long and you want to avoid retyping it, you can use this syntax:

>>> from os import listdir
>>> listdir("/Users/mcdm/Downloads/Fisher")
['058', '065']

Like all the shortcuts, you never need to use this one--- the longer form is always acceptable.

Some important modules
It's worth knowing about a few modules that Python programmers use a lot. Here's a quick list--- you can
learn more about them with help, or read the tutorial page.

https://docs.python.org/3/tutorial/modules.html#modules
https://docs.python.org/3/tutorial/stdlib.html#brief-tour-of-the-standard-library

sys: sys.argv gives you access to your program's command line arguments (as in
python myscript.py ARG1 ARG2 ARG3...).

re: Grep-style regular expressions--- hard to debug, but powerful!

math: log, exp, sqrt, trigonometry...

random: random number generation

os: directory and filesystem queries, plus os.system for running external programs

Modifying the program
How do we need to modify our program to make it run over all the files? os.listdir gives us a list of files in a
directory, and we'll need to process each one in the same way. This means we'll need a new for loop.
Which parts of our previous program should be inside it? Which parts need to stay outside?

Modify the program to run over all the files in the 065 directory. What are the results? If you're having
trouble doing this, read on for a few hints.

One possible issue is that os.listdir gives the names of the files in 065... but you can't open these files
directly. (You can tell this by checking with ls. Go back and try this now.)

What's wrong? The open function needs the full path from the current directory to the file, not just the
name. You need to create a filename:

>>> fisherDir = "Fisher/065"
>>> fileName = "fe_03_06518.txt"
>>> fisherDir + "/" + fileName
'Fisher/065/fe_03_06518.txt'

Another is that the program won't work if you have any junk files in your Fisher directory. If this is the
issue, try writing an if statement to check if the filename starts with fe and ends with .txt. What
comparisons should you use?

What are your results? Who talks more?

As a final embellishment, try allowing the user to specify the directory name on the command line, like
this:

$ python3 processDir.py Fisher/065

You'll need to use the sys module... try searching the web for an example.

	Processing a sentence
	Writing a Python script
	Variables
	Program structure

	Processing a file
	The for loop
	Exercise
	File handling
	Decision-making with if
	Comparisons
	Logic
	Using 'if' to check the gender

	Processing multiple files
	Modules
	Some important modules
	Modifying the program

