
Praat scripting with Python
In this unit, we will introduce you to automated acoustic analysis, using Praat and some third-party Python
libraries which enable you to write Praat scripts in Python.

Why Praat? Praat is free software written and maintained by Paul Boersma and David Weenink (University
of Amsterdam) for analyzing speech. Praat is a de-facto standard for linguistic analysis of audio data. It
provides reference implementations of a wide variety of signal processing functions, a handy GUI interface
for inspecting and annotating your data, and it's free!

Praat also has its own scripting language... Unfortunately, this language is notoriously terrible: poorly
documented, unintuitive, full of old-fashioned software design ideas and annoying little "gotchas". In
previous versions of the course, we used this set of lectures to teach you a little bit about the Praat
scripting language. We focused on how to download and debug scripts written by others, because frankly,
writing your own Praat scripts from scratch is just too awful.

Nowadays, though, it's possible to do a lot of your Praat scripting from within the comfort of Python. This
approach has some serious advantages (the Python code is shorter, easier to read and much easier to
write), but also some disadvantages: the libraries we're going to use are still pretty new, so there won't be
as much documentation available and some pieces of Praat functionality are not yet accessible.

If you are not familiar with Praat, the following tutorial will be extremely useful:

Will Styler. Using Praat for Linguistic Research.

Styler explains both how to use Praat by hand and how to write Praat scripts. You should read the "by
hand" sections. You won't need the scripting section but you can feel free to use it as a reference.

We are going to be using the Parselmouth library to call Praat's acoustic analysis routines. See the
Parselmouth API for details.

We'll use the TextGridTools library for working with TextGrid annotations.

You probably know that everyone has different vowels. We are going to look at our own vowel spaces by
recording and plotting a tiny dataset. To that end we will need to learn about Praat, and use what we have
learned in R for visualizing the data.

Recording
First you will want to record yourself. Record the following list of words:

hid
head
heed
who'd
hood
hawed
hod
had
hand
ham

Make your recording as clear as possible: make sure your environment is quiet. If you have a separate
microphone you can use it, but if not, use the built-in microphone on the computer.

Important: we want to have a *.wav file. So make sure that you save your file under that format!

If you don't know how to record on your computer, Audacity is a good option: it can be downloaded for
free. It is quite straightforward. Record using the red circle button. Stop the recording using the yellow
square. To save the file: File > Export. Or you can do it in Praat. Follow the instructions in Section 4 of Will
Styler's Praat guidebook.

http://www.fon.hum.uva.nl/praat/
http://savethevowels.org/praat/UsingPraatforLinguisticResearchLatest.pdf
https://github.com/YannickJadoul/Parselmouth
https://github.com/YannickJadoul/Parselmouth
https://github.com/hbuschme/TextGridTools
http://audacity.sourceforge.net/
http://savethevowels.org/praat/UsingPraatforLinguisticResearchLatest.pdf
http://savethevowels.org/praat/UsingPraatforLinguisticResearchLatest.pdf

So we want to have one *.wav file containing your recording of the 10 words above.

Manual annotation
We will now see how we can annotate the sounds in Praat. Look at Section 9 of Will Styler's Praat
guidebook. This explains what you need to know. We want to mark the beginning and end of the word, and
the beginning and end of the vowel. So we will create two tiers in the TextGrid: one for the word and one
for the vowel. Then annotate your *.wav file.

Scripting
Now to create our vowel space plot, we need to extract the first two formants (F1 and F2) of our 10 vowels.
F1 and F2 are related, respectively, to the height of the tongue (high frequency F1 = low vowel, low
frequency F1 = high vowel) and to the backness/frontness of the tongue (high frequency F2 = front vowel,
low frequency F2 = low vowel). We would like to create a table that contains for each vowel (one vowel per
line) the vowel, F1 and F2.

Start out by doing the measurement by hand, for a single vowel. Will Styler walks you through this process
in 11.3.4 of his scripting tutorial. Take notes! What functions did you use? What values did you get? We
will use these numbers to check our work once we have a script working.

TextGrids
Now, let's start to work on our script. The first thing we'll need is a way to work with the TextGrid we
created to represent our annotations. As stated above, we'll use TextGridTools to do this. This ESSV
paper (Buschmeier and Wlodarczak, 2013) gives an example of how to use the library, and the
documentation lists all the function names and classes. Section 3.1 of the paper gives some example
code.

How do we read in a TextGrid file? How do we list the tier names? How do we access a tier by name? By
number?

Write a script that takes a TextGrid file name on the command line, reads it in, and prints the tier names.
Check that it does what you expect.

How do you access the intervals of a tier? Loop through the intervals. Print the starting and ending
timestamps and the label of each one. Verify that these values are correct for the first vowel by opening
Praat and checking them by hand!

We'd like to print not only the vowel label, but also the word in which it occurred. Write a function to take
an interval from one tier, and find the corresponding interval from another. There are two ways to do this,
and you should make sure you understand both!

First, write a function that searches the intervals of the target tier using a for loop.

Next, search the documentation. Can you find the function that does this for you?

Acoustic analysis
Now that we can use the TextGrid to find the right intervals, we'll need to compute the formants. Look over
the Parselmouth site for an example of how to read in a .wav file, and then use the Parselmouth API to find
out how to compute formants.

What does the formant computation method return? What happens when you print the return value? How
do you access f1 and f2 at a particular time point?

Verify the automatic measurements for the first vowel against your notes of your manual measurements.

http://savethevowels.org/praat/UsingPraatforLinguisticResearchLatest.pdf
http://savethevowels.org/praat/UsingPraatforLinguisticResearchLatest.pdf
http://home.cc.umanitoba.ca/~krussll/phonetics/acoustic/formants.html
https://github.com/hbuschme/TextGridTools
file:///asc/elsner.14/Downloads/essv2013-paper-FINAL.pdf
file:///asc/elsner.14/Downloads/essv2013-paper-FINAL.pdf
https://textgridtools.readthedocs.io/en/stable/api.html
https://github.com/YannickJadoul/Parselmouth
https://github.com/YannickJadoul/Parselmouth

Output
Modify the script so that it prints a nice tab-separated value file with column headers. Check that you can
read the values you printed into R! An elegant way to make sure your columns and headers match up is to
use the csv module. A less elegant, but still easy, way to do it is to use "t".join([...]), so you can see
exactly what you're printing. Do not write separate print statements interleaved with your processing code.
It's too easy to skip or miscount one!

Automatic annotation
If we have a huge number of words, we probably don't want to do this by hand. We can use forced
alignment to automatically create the TextGrid for us. These days, there are a variety of forced aligners
you can choose from for local installation. We'll use the web interface to MAUS, which allows you to do
everything from the browser.

You will need to give your *.wav file and a transcription, and MAUS will send you back a TextGrid, similar
to what we manually did. Compare them. How well did MAUS do?

Do you need to change your script at all to make it work?

https://github.com/pettarin/forced-alignment-tools
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/WebMAUSBasic

	Recording
	Manual annotation
	Scripting
	TextGrids
	Acoustic analysis
	Output
	Automatic annotation

