An Analysis of Working Memory Constraints in a Head-Final Language

Evan Jaffe Dept Linguistics, The Ohio State University QP1

April 19, 2014

Evan Jaffe An Analysis of Working Memory Constraints in a Head-Final Lar

- Question: Are working memory requirements similar cross-linguistically?
- Method: Corpus analysis of center-embedding depth
- Spoiler: Similar requirements for Japanese and English

- Human sentence processing is subject to cognitive constraints
- Constraints should be cross-linguistic
- Constraints can inform models and make predictions

- Chunking, Rehearsal, Memorization, Stimulus Mode
 - Magic Number 7 (+-2) [Miller, 1956]
 - Magic Number 4 (+-1) [Cowan, 2001]
 - Magic Number 2 [Gobet and Clarkson, 2004]
 - ... but not register overflow so much as interference [Lewis and Vasishth, 2005]
 - ... which elegantly gets degradation, confusability effects

Working Memory and Center-embedding

- (1) The rat [the cat [the dog chased] ate] died. [Chomsky and Miller, 1963]
- (2) You are what [what you eat] eats. [Pollan, 2006]

Zig-zag measure

< 47 ▶

→ ∃ →

- Center-embedded sentences are difficult to process
- Imposes memory load on parser
 - [Johnson-Laird, 1983]
 - [Abney and Johnson, 1991]
- Other explanations for processing difficulty
 - Semantic, embedding categories [Karlsson, 2007]
 - Distance, number of NPs [Gibson, 2000]

If embedding depth is related to a cognitive constraint, it should be cross-linguistically similar.

- Swedish 4 connected components [Nivre, 2004]
- English 3-4 connected components [Schuler et al., 2010]
- 7 Indo-European VO languages 3 maximum depth in written [Karlsson, 2007]
- [Bader and Haussler 12] corpus analysis of German, not strictly head-final
- dispute Karlsson's competence/grammatical constraints and argue for performance limitations
- Japanese ?

イロト イポト イヨト イヨト

= nar

Why would SVO vs. SOV matter?

- Different embedding depths
- E.g., prenominal modification in object position

These trees are controversial! Alternatives will be discussed later.

- Method: corpus study of center-embedding depth
- Wall Street Journal section of Penn Treebank [Marcus et al., 1993]
- Switchboard Corpus [Godfrey et al., 1992]
- Kyoto University Corpus [Kawahara et al., 2002]
 - 40,000 sentences of newspaper text
 - automatically parsed, then hand-corrected
 - JUMAN Morphological Analyzer [Kurohashi and Nagao, 1998]
 - KNP Dependency Parser [Kurohashi and Nagao, 1994]
 - bunsetsu syntactic unit
 - One content word per bunsetsu
 - > Particles and function words attached to nearest bunsetsu to the left

イロト 不得 トイヨト イヨト

э

Bunsetsu examples

- ロシア側は roshiagawaha 来てみると kitemiruto
- (1) roshia-gawa-ha russia-side-TOP 'the Russians'
- (2) ki-te-mi-ru-to come-TE-try-NONPAST-upon 'upon trying to come'
 - Relative to English, longer 'words', shorter sentences
 - Articles, prepositions, some verbal auxiliaries
 - Alternative tokenizations are possible
 - Length normalization will be an issue

< 回 > < 回 > < 回 >

- Binarized trees
- Right-corner depth measure left children of right parents increase depth
- Otherwise, children inherit depth of parent

greatest depth non-terminal defines maximum embedding depth

Methods - Convert dependency to category tree

Japanese dependency trees require conversion

- Bottom-up chart parsing style algorithm
- Finds increasingly larger continuous spans of satisfied dependencies

 (3) roshiagawaha shuto seiatsuno saishuu dankaini russia-side-TOP capital control-GEN final discussion-LOC haittato mirareru enter-PAST see-PASS It is seen that Russia entered into the final discussion about control of the capital

Consistent maximum depth as for English and Swedish

Memory	Sent	Coverage	Sent	Coverage	Sent	Coverage
capacity	EN-swbd	EN-swbd	EN-wsj	EN-wsj	JP-kyo	JP-kyo
no connected components	26,200	28.68%	35	0.09%	0	0.00%
1 element	59,253	64.87%	3,101	8.14%	6,324	16.55%
2 elements	85,944	94.09%	23,536	61.76%	26,430	69.17%
3 elements	91,008	99.63%	36,433	95.61%	36,723	96.11%
4 elements	91,332	99.98%	38,039	99.82%	38,133	99.80%
5 elements	91,346	100.00%	38,105	99.99%	38,209	100.00%
6 elements	91,346	100.00%	38,107	100.00%	38,209	100.00%

 Count and percent (cumulative) corpus coverage by maximum embedding depth for Switchboard, WSJ, Kyoto

Kyoto Max Embedding Depths by Length

Evan Jaffe

An Analysis of Working Memory Constraints in a Head-Final Lar

Kyoto Max Embedding Depths by Length (normed)

Evan Jaffe An Analysis of Working Memory Constraints in a Head-Final Lar

WSJ Max Embedding Depths by Length

An Analysis of Working Memory Constraints in a Head-Final Lar

WSJ Max Embedding Depths by Length (normed)

Evan Jaffe An Analysis of Working Memory Constraints in a Head-Final Lar

Switchboard Max Embedding Depths by Length

Evan Jaffe An Analysis of Working Memory Constraints in a Head-Final Lar

Switchboard Max Embedding Depths by Length (normed)

An Analysis of Working Memory Constraints in a Head-Final Lar

No significant effect of genre - WSJ vs. Switchboard

Wilcoxon Rank Sum Test

Data subset	signficance	P-value
Full corpora	***	2.2e-16
Fixed length bin (30-40)		0.92
Top deciles	***	2.2e-16

- Length is a confound for predicting depth
- Top decile potentially still confounds depth fixed bins trustworthy here

Effect of language uncertain - WSJ vs. Kyoto

Wilcoxon Rank Sum Test

Data subset	signficance	P-value
Full corpora	***	2.2e-16
Fixed length bin (30-40)	***	2.2e-16
Top deciles	***	2.2e-16

イロト イポト イヨト イヨト

- Likelihood Ratio Test significant difference between top deciles
 - Model 1: depth ~length
 - Model 2: depth ~length + lang
 - Chisq: 420.64
 - Pr(>Chisq): 2.2e-16
- ...but top deciles still have different sentence length means (wsj=45.64, kyoto=28.48, swbd=25.07)
- ...length confound still potentially present
- Interaction term?
- How to reliably normalize sentence length cross-linguistically?

イロト 不得 トイヨト イヨト

- Conversion from dependency tree to category tree has multiple possibilities
- [Bhatt and Xia, 2011]
- [Xia and Palmer, 2001]

Alternate Left-branching binarization

Kyoto Corpus Coverage by Tree Conversion Scheme

Memory	Sent	Percent	Sent	Percent
capacity	JP-left	JP-left	JP-cont	JP-cont
no connected components	0	0.00%	0	0.00%
1 element	4550	11.90%	6324	16.55%
2 elements	30,820	80.63%	26,430	69.17%
3 elements	37,589	98.14%	36,723	96.11%
4 elements	38,200	99.93%	38,133	99.80%
5 elements	38,225	100%	38,209	100%

Left-binarized Max Embedding Depth Mean: 1.881

Contiguous Max Embedding Depth Mean: 2.183

- Left-binarization predicts less working memory requirements
- Integration cost sites different predicts different places for slow down/speed up
- Compare model predictions to human subject data for reading times, ERP, etc.? [van Schijndel and Schuler, 2013]
- Spectrum of attachability
 - strict incremental attachment does not model memory
 - no attachment, memory demands spiral out of control

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

э

Possible...but might be less cognitively plausible

Evan Jaffe An Analysis of Working Memory Constraints in a Head-Final Lar

Contiguous model

- Constraint of only connecting components that share a head
- Must use additional memory once additional head is hypothesized

- 4月 ト 4 ヨ ト 4 ヨ

- Corpus of Spoken Japanese is the domain effect finding robust?
- Generate a latent-variable PCFG synthetic corpus does it overgenerate center-embedding? [Schuler, 2011]
 - Train latent-variable PCFG parser on Kyoto
 - Generate corpus
 - Generate corpus with 5+ depth sentences removed
 - Compare corpus fit between each synthetic corpus and Kyoto

イロト イロト イヨト イヨト

- Corpus analysis of a head-final language
- Maximum embedding depth is comparable to previous findings in head-initial languages
- No significant effect of genre (informal speech vs. written news)
- Uncertain effect of language

Thanks to my committee: Micha Elsner, Marie-Catherine de Marneffe, William Schuler Thank you Mary Beckman, Cynthia Clopper, and Clippers members for additional feedback

э

Abney, S. P. and Johnson, M. (1991).

Memory requirements and local ambiguities of parsing strategies. J. Psycholinguistic Research, 20(3):233–250.

Bhatt, R. and Xia, O. R. F. (2011).

Linguistic phenomena, analyses, and representations: Understanding conversion between treebanks.

In Proc. AFNLP.

Chomsky, N. and Miller, G. A. (1963).
 Introduction to the formal analysis of natural languages.
 In <u>Handbook of Mathematical Psychology</u>, pages 269–321. Wiley, New York, NY.

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

э

Cowan, N. (2001).

The magical number 4 in short-term memory: A reconsideration of mental storage capacity.

Behavioral and Brain Sciences, 24:87-185.

Gibson, E. (2000).

The dependency locality theory: A distance-based theory of linguistic complexity.

In Image, language, brain: Papers from the first mind articulation project symposium, pages 95–126, Cambridge, MA. MIT Press.

Gobet, F. and Clarkson, G. (2004).

Chunks in expert memory: Evidence for the nagical number four...or is it two?

<u>Memory</u>, 6(12).

- Godfrey, J. J., Holliman, E. C., and McDaniel, J. (1992).
 Switchboard: Telephone speech corpus for research and development. In <u>Proc. ICASSP</u>, pages 517–520, San Francisco, CA.
- Johnson-Laird, P. N. (1983).

Mental models: towards a cognitive science of language, inference, and consciousness.

Harvard University Press, Cambridge, MA, USA.

Karlsson, F. (2007).

Constraints on multiple center-embedding of clauses.

Journal of Linguistics, 43:365–392.

< ロ > < 同 > < 三 > < 三 > 、

Kawahara, D., Kurohashi, S., and Hasida, K. (2002).
Construction of a Japanese relevance-tagged corpus (in Japanese).
In Proceedings of the Eighth Annual Meeting of the Association for Natural Language Processing, pages 495–498. Association for Natural Language Processing.

🚺 Kurohashi, S. and Nagao, M. (1994).

A syntactic analysis method of long japanese sentences based on the detection of conjunctive structures.

In Proc. ACL.

Kurohashi, S. and Nagao, M. (1998). Japanese Morphological Analysis System JUMAN version 3.6.

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

э

Lewis, R. L. and Vasishth, S. (2005).

An activation-based model of sentence processing as skilled memory retrieval.

Cognitive Science, 29(3):375-419.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993).
 Building a large annotated corpus of English: the Penn Treebank.
 <u>Computational Linguistics</u>, 19(2):313–330.

Miller, G. A. (1956).

The magical number seven, plus or minus two: Some limits on our capacity for processing information.

Psychological Review, 63:81–97.

< ロ > < 同 > < 三 > < 三 > 、

Nivre, J. (2004).

Incrementality in deterministic dependency parsing.

In <u>Proceedings of the Workshop on Incremental Parsing: Bringing</u> Engineering and Cognition Together (IncrementParsing '04), pages 50–57.

- Pollan, M. (2006).

In Defense of Food: An Eater's Manifesto.

Penguin Books, New York.

Schuler, W. (2011).

Effects of filler-gap dependencies on working memory requirements for parsing.

In <u>Proceedings of COGSCI</u>, pages 501–506, Austin, TX. Cognitive Science Society.

= nar

Schuler, W., AbdelRahman, S., Miller, T., and Schwartz, L. (2010). Broad-coverage incremental parsing using human-like memory constraints.

Computational Linguistics, 36(1):1–30.

- van Schijndel, M. and Schuler, W. (2013).
 An analysis of frequency- and recency-based processing costs.
 In <u>Proceedings of NAACL-HLT 2013</u>. Association for Computational Linguistics.
 - Xia, F. and Palmer, M. (2001).

Converting dependency structures to phrase structures. In <u>Proc. HLT</u>.

イロト イポト イヨト イヨト

э