Keyword in context

	A	corpus can’t describe a natural language	
	Nature	abhors	a vacuum.
	All’s	well that ends well.	
	A corpus	can’t describe a natural language entirely.	
You shall know a word by the company it keeps.			
A corpus	can’t describe a natural language entirely.		
No corpus	is ever too large.		
Corpus linguists study real language.			
e people live in New York than Dayton Ohio.			
A corpus can’t describe a natural language entirely.			
Other linguists just dream up wild and impossible sentences			
All’s well that ends well.			
’t describe a natural language entirely.			
No corpus is ever too large.			
Every man has a price ...			

LaTeX as display engine

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Word</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>corpus can’t describe a natural language</td>
<td></td>
</tr>
<tr>
<td>Nature</td>
<td>abhors</td>
<td>a vacuum.</td>
</tr>
<tr>
<td>All’s</td>
<td>well that ends well.</td>
<td></td>
</tr>
<tr>
<td>A corpus</td>
<td>can’t describe a natural language entirely.</td>
<td></td>
</tr>
<tr>
<td>You shall know a word by the company it keeps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A corpus</td>
<td>can’t describe a natural language entirely.</td>
<td></td>
</tr>
<tr>
<td>No corpus</td>
<td>is ever too large.</td>
<td></td>
</tr>
<tr>
<td>Corpus linguists study real language.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e people live in New York than Dayton Ohio.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A corpus can’t describe a natural language entirely.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other linguists just dream up wild and impossible sentences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All’s well that ends well.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>’t describe a natural language entirely.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No corpus is ever too large.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Every man has a price ...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```python
#!/bin/env python
# rotate.py
import fileinput
import string

for line in fileinput.input():
    line = string.rstrip(line)
    for i in range(len(line)):
        if line[i] == " ":
            print line[i:] + "\t" + line[:i]

Every man has a price.
price. Every man has a
a price. Every man has
has a price. Every man
man has a price. Every
Nature abhors a vacuum.
```

cat text | rotate.py | sort -f | unrotate.py
```
#!/bin/env python
# unrotate.py
import fileinput
import string

width = 30
for line in fileinput.input():
    fields = string.split(string.rstrip(line),'	')
    size = len(fields[1]) - width + 1
    print ('%s %s')
    % (fields[1][size:],fields[0][:width])
```

```
rotate.awk example | sort -f | unrotate.awk | sed 20q
A corpus can't describe a natural language entirely.
Every man has a price.
Nature abhors a vacuum.
You shall know a word by the company it keeps.
Nature abhors a vacuum.
All's well that ends well.
A corpus can't describe a natural language.
No corpus is ever too large.
Corpus linguists study real language.
Dayton Ohio.
Other linguists just dream up wild and impossible sentences.
All's well that ends well.
No corpus is ever too large.
```

A corpus can't describe a natural language entirely.

Every man has a price.

Nature abhors a vacuum.

You shall know a word by the company it keeps.

Nature abhors a vacuum.

All's well that ends well.

A corpus can't describe a natural language.

No corpus is ever too large.

Corpus linguists study real language.

Dayton Ohio.

Other linguists just dream up wild and impossible sentences.

All's well that ends well.

No corpus is ever too large.
Advantages of KWIC format

- Displays real examples.
- Focuses on usages of the keyword.
- Differences easily visible.
- Exposes relationships between words.

Disadvantages of KWIC format

- Can produce too much information (but more selectivity is easy to arrange)
- Limited window to left and right (no good solution other than big screens)
- No quantitative component. (subject of this lecture)
Why to count

• One event on its own doesn’t tell us much.
• Five hundred events might be more convincing.
• Some patterns are surprising; others might have arisen by chance.
• Statistics builds (mathematical) models of which patterns are likely to happen by chance.
• The idea is to find patterns which are very unlikely to be accidental. To do this, you compare them with the model.
• The more you count, the more certain you get.

Patterns of word usage

We are interested in finding patterns in word usage. *Collocations* are pairs of words that seem closely related (M & S, p 183ff for detail). For now, won’t define them. The first step is to count something.

Could count any of:

• Bigrams.
• Words occurring within five words of each other.
• Translation pairs
• Phrases.
• ...

For the purpose of illustration, we choose bigrams. But the principle is the same for the others.
Frequency-based search

- Count bigrams.
- Raw frequency gives “of the” etc.
- Justeson and Katz filter by part-of-speech (much better).
- Simple statistical measure (frequency) + Linguistic insight (p-o-s matters).

Long distance collocations

M & S 5.2

- Tabulate offsets between (say) “hundreds” and “dollars”.
- Summarize table with mean and variance.
- By looking at the summary stats, can we infer anything useful about the words?
Contingency tables

We count the bigrams in “A Case of Identity”. We can cut up the outcomes into four distinct possibilities.

- We get *Sherlock* then *Holmes*.
- We get *Sherlock* then some other word.
- We get some other word then *Holmes*.
- We get two words, first not *Sherlock*, second not *Holmes*.

This covers all the possibilities (contingencies). You can do the same sort of counting for every pair of words in the corpus.

<table>
<thead>
<tr>
<th>Word A: Sherlock</th>
<th>Word B: Holmes</th>
<th>Not Word B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>A \cap B</td>
<td>= 7$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\neg A \cap B</td>
<td>= 39$</td>
<td>$</td>
</tr>
<tr>
<td>Total</td>
<td>$</td>
<td>B</td>
<td>= 46$</td>
</tr>
</tbody>
</table>

Equivalent to:

Sherlock *Holmes* 7 0 39 7059

which is easier to process with a computer.
Which are the interesting pairs?

Maybe the frequent ones:

- of the 41,126,309,6629
- in the 24,82,326,6673
- that i 23,111,137,6834
- it is 22,97,58,6928
- to the 22,169,328,6586
- it was 21,98,90,6896
- at the 21,29,329,6726
- said holmes 18,27,28,7032
- hosmer angel 17,6,4,7078
- i have 15,145,32,6913

Can’t tell difference between strong pairs made of rare words and weak pairs of common words.

The t test

- M & S section 5.3.1, 5.3.2
- If you don’t know t-tests already, skip this.
Imagine a cup of word confetti made by cutting up a copy of “A Case of Identity”

Pick words out one at a time. Note them and put them back.

The probability of sherlock is \(p(\text{sherlock}) = \frac{7}{7105} = 0.0009854 \). The fraction of time you expect to see it if you draw one word.

\[p(\text{holmes}) = \frac{46}{7105} = 0.00637. \]

In fact we see it 150 times more often than that, so language is more interesting than word confetti.

And Sherlock Holmes is part of what makes it so.

Each word token in the document gets to be first in a bigram once, so the number of bigrams is 7105 too. (or 7104? 7106?).

\[p(\text{sherlock}, \neg \text{holmes}) = \frac{7}{7105} = 0.0009854 \]

\[p(\text{sherlock}, \neg \text{holmes}) = 0/7105 = 0.0 \]

\[p(\neg \text{sherlock}, \text{holmes}) = \frac{39}{7105} = 0.0055 \]

\[p(\neg \text{sherlock}, \neg \text{holmes}) = \frac{7059}{7105} = 0.9935 \]

We lay these out in a table. Note the marginal totals.

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>\neg holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>0.00099</td>
<td>0.0</td>
<td>0.00099</td>
</tr>
<tr>
<td>\neg sherlock</td>
<td>0.0055</td>
<td>0.9935</td>
<td>0.9990</td>
</tr>
<tr>
<td>Total</td>
<td>0.0064</td>
<td>0.9935</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Assume word confetti

- If it were word confetti, we could assume that the probability of second word is unaffected by probability of second word.
- In the table, we can do this by multiplying marginal probabilities.
- This gets the probabilities if you assume word confetti.

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>0.00647 × 0.00099</td>
<td>0.9935 × 0.00099</td>
<td>0.00099</td>
</tr>
<tr>
<td>¬sherlock</td>
<td>0.00647 × 0.9990</td>
<td>0.9935 × 0.9990</td>
<td>0.9990</td>
</tr>
<tr>
<td>Total</td>
<td>0.00647</td>
<td>0.9935</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Expected frequencies from probabilities

- Multiply everything by 7105

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>0.05</td>
<td>6.95</td>
<td>7</td>
</tr>
<tr>
<td>¬sherlock</td>
<td>45.5</td>
<td>7052.05</td>
<td>7098</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>7059</td>
<td>7105</td>
</tr>
</tbody>
</table>
Deviations from expectation

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>7 − 0.05</td>
<td>0 − 6.95</td>
<td>-</td>
</tr>
<tr>
<td>¬sherlock</td>
<td>39 − 45.94</td>
<td>7059 − 7052.06</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

and there is a statistic called χ^2 which is made from theses differences. (M & S 5.3.3)

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

This will be big when we are not dealing with word confetti.

Contributions to χ^2

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>(7 − 0.05)2</td>
<td>(0 − 6.95)2</td>
<td>-</td>
</tr>
<tr>
<td>¬sherlock</td>
<td>45.94</td>
<td>7059 − 7052.06</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Summing these

$$\chi^2 = \frac{(7 − 0.05)^2}{0.05} + \frac{(0 − 6.95)^2}{6.95} + \frac{(39 − 45.94)^2}{45.94} + \frac{(7059 − 7052.06)^2}{7052.06}$$

$$= 966.05 + 6.95 + 1.048 + 0.006$$

$$= 974.05$$

which you can look up in the table and find to be unlikely by chance.
So what happens?

7105.00 zealand stock 1 0 0 7104
7105.00 wreaths spinning 1 0 0 7104
7105.00 wild clatter 1 0 0 7104
7105.00 whoso snatches 1 0 0 7104
7105.00 westhouse marbank 2 0 0 7103
7105.00 wel comed 1 0 0 7104
7105.00 wash linen 1 0 0 7104
...

Oops.

For technical reasons you have to have a situation where $f_e > 5$ or χ^2 might produce nonsense. It over-emphasises the significance of rare events. In general, statistical tests are like this.

Binomial Likelihood ratio

Dunning (CL 19 (1) pp 61–74, 1993) M & S 5.3.4

Based on a different set of assumptions:

- Tests hypothesis that the $|A|$ and the $|\sim A|$ rows come from the same binomial distribution.
- Less sensitive to rare events.
- Might still (like any test) mislead sometimes.
Results of likelihood ratio

192.31 hosmer angel 17 6 4 7078
129.23 said holmes 18 27 28 7032
118.73 mr windibank 14 36 6 7049
101.18 mr hosmer 13 37 10 7045
 91.71 it is 22 97 58 6928
 86.90 mr holmes 14 36 32 7023
 76.86 of the 41 126 309 6629
 73.10 there is 13 22 67 7003
 71.68 sherlock holmes 7 0 39 7059
 70.48 it was 21 98 90 6896

Binomial likelihood ratio is not infallible

- For even smaller samples can use yet other tests.
- You need to know your tests and use them wisely.
- cf. Mutual information M & S 5.4
Words and documents

There ought to be a difference between things which are frequent in all documents (e.g. of the) and those which are frequent in some only (e.g. sherlock holmes).

- The binomial model, and its relative the Poisson distribution don’t take account of the “burstiness” of words.
- The negative binomial does, used by Church to find “interesting words” and by Mosteller and Wallace to discriminate authorship.