
Complete Partial Orders, PCF, and Control

Andrew R. Plummer

TIE Report Draft – January 2010

Abstract

We develop the theory of directed complete partial orders and
complete partial orders. We review the syntax of the abstract pro-
gramming language PCF, and present its interpretation into the carte-
sian closed category of complete partial orders. We then present cat-
egory theoretic interpretations for control operators. This material is
mostly drawn from Chapters 1, 6, and 8 in Amadio & Curien (1998).

Introduction

Just a few words about where this is going. We want to understand contin-
uations, so we have determined the following path to understanding them:

Continuations

The syntax and semantics of control operators

The syntax and semantics of PCF

Cpos as CCCs Syntax and semantics of λ-theories

We assume familiarity with the syntax and semantics of λ-theories, thus it
will be covered only in passing. We assume the reader has some exposure

1

to category theory, though we will present enough of it for readers without
extensive experience. Thus, we begin with the category theory of cpos (Sec-
tion 1), and work toward the syntax and semantics of PCF (Section 2). We
then present Scott topologies and the category of dcpos with partial con-
tinuous functions as arrows (Section 3). We then present the syntax and
semantics of control operators (Section 4).

1 Directed Complete Partial Orders

1.1 Definitions and Examples

Definition 1. Given a partial order (D,≤), a non-empty subset ∆ ⊆ D is
called directed if, for all x, y ∈ ∆, there is a z ∈ ∆ such that x ≤ z and y ≤ z.

We write ∆ ⊆dir D if ∆ is a directed subset of D.

Example 1. The natural numbers N with the usual ≤ relation is a partial
order (N,≤). Let ∆ be any subset of N, and consider x, y ∈ ∆. It is easy to
see that z =max(x, y) ∈ ∆ is such that x ≤ z and y ≤ z. That is, ∆ ⊆dir N.

Definition 2. A partial order (D,≤) is called a directed complete partial
order (dcpo) if each ∆ ⊆dir D has a least upper bound (lub), denoted

∨
∆. A

directed complete partial order that has a least element, denoted ⊥, is called
a complete partial order (cpo).

Example 2. Let Nn be the set of the first n natural numbers. Then (Nn,≤)
is a dcpo. Moreover, since 0 ≤ k for all k ∈ Nn, (Nn,≤) is a cpo with least
element 0. Notice that (N,≤) is not a dcpo, since the set of odd natural
numbers has no least upper bound.

Example 3. Let Zn be the set of integers k such that k ≤ n. Then (Zn,≤) is
a dcpo. Notice that (Zn,≤) is not a cpo, since it has no least element.

Let (D,≤) be a partial order. An infinite ascending chain is a sequence
x0, x1, . . . , xn, . . . of distinct elements in D such that x0 ≤ x1 ≤ · · · ≤ xn · · · .
The unbounded sets N and Z are not suitable for forming dcpos, as they
contain infinite ascending chains (e.g. the set of odd natural numbers). The

2

upper bounds on their counterparts Nn and Zn disallow infinite ascending
chains, making both Nn and Zn suitable for dcpos. We can generalize this
observation.

Example 4. All partial orders without infinite ascending chains are dcpos.

The following example provides a method for constructing a cpo out of any
given set.

Example 5. Let X be any set. Define X⊥ = X ∪ {⊥} where ⊥ < X, and for
x, y ∈ X⊥, define x ≤ y iff x = ⊥ or x = y. Then (X⊥,≤) is a cpo.

A cpo X⊥ constructed this way is called flat, due to the appearance of its
hasse diagram. The following examples of flat cpos will be important in
later developments.

Example 6. Let B = {tt,ff}, where tt and ff are called truth values. Let ω be
the smallest infinite limit ordinal. Then both B⊥ and ω⊥ are flat cpos.

Definition 3. Let (D,≤) and (D′,≤′) be partial orders. A function f : D →
D′ is called monotonic if, for all x, y ∈ D, if x ≤ y, then f (x) ≤′ f (y).

Example 7. Let f : N → N be the function f (n) = n + 1. Then f is
monotonic, given the partial order (N,≤).

Example 8. Let f : Nn → Nn+1 be defined as above. Then f is monotonic,
given the partial orders (Nn,≤) and (Nn+1,≤).

Definition 4. Let (D,≤) and (D′,≤′) be dcpos. A function f : D → D′ is
called continuous if f is monotonic and, for all ∆ ⊆dir D, f (

∨
∆) =

∨
f (∆)1.

When the second condition in the definition is satisfied, we say that f pre-
serves directed lubs.

Example 9. Consider (Nn,≤) and (Nn+1,≤), and f : Nn → Nn+1 defined
in Example 7. We want to show that f is continuous. We have already
established that f is monotonic. We just need to show that f preserves
directed lubs. Let ∆ ⊆dir Nn. Then

∨
∆ is simply the largest natural number

1 f (∆) = { f (δ) | δ ∈ ∆}.

3

in ∆, call it δ. Since k ≤ δ for all k ∈ ∆, it follows from the monotonicity
of f that f (k) ≤ f (δ) for all k ∈ ∆. That is, f (δ) is the largest natural
number in f (∆), hence

∨
f (∆) = f (δ) = f (

∨
∆). Since ∆ was arbitrary, f

is continuous.

Proposition 1. Let (D,≤) be a dcpo, and let idD be the identity function on
D. Then idD is a continuous function.

Proof. For x, y ∈ D such that x ≤ y, clearly idD(x) = x ≤ y = idD(y). Let
∆ ⊆dir D. We have idD(

∨
∆) =

∨
∆, and

∨
idD(∆) =

∨
∆. �

Proposition 2. Let (D,≤), (D′,≤′), and (D′′,≤′′) be dcpos, and let f : D→
D′ and g : D′ → D′′ be continous functions. Then g ◦ f : D → D′′ is
continuous.

Proof. Let x, y ∈ D such that x ≤ y. Then f (x) ≤′ f (y), and so g(f (x)) ≤′′

g(f (y)). Thus, g ◦ f is monotonic. Let ∆ ⊆dir D. We need to show that
g(f (
∨

∆)) =
∨

g(f (∆)). Since f is continuous, g(f (
∨

∆)) = g(
∨

f (∆)),
and since g is continuous, g(

∨
f (∆)) =

∨
g(f (∆)). �

1.2 The Categories Dcpo and Cpo

Propositions 1 and 2 allow us to define the following categories.

Definition 5. The category Dcpo has dcpos as objects and continuous func-
tions as arrows. The category Cpo is the full subcategory of Dcpo with cpos
as objects.

Checking in detail that Dcpo and Cpo are categories is left as an exercise.
We now want to show that Dcpo and Cpo are cartesian closed categories
(ccc), and thus induce λ-theories. We need to show the following:

1. There is a cpo (T,≤) such that for every dcpo (D,≤′), there is exactly
one continuous function 1D : D → T . A cpo (T,≤) satisfying this
condition is called a terminal object.

2. Given dcpos (D,≤) and (D′,≤′), there is a dcpo (D×D′,≤×) equipped
with continuous functions π1 and π2 such that for any dcpo (E,≤′′

) with continuous functions f : E → D and g : E → D′, there

4

is a unique continuous function 〈 f , g〉 : E → D × D′, defined as
〈 f , g〉(x) = 〈 f (x), g(x)〉, such that f = π1 ◦ 〈 f , g〉 and g = π2 ◦ 〈 f , g〉.
A dcpo (D × D′,≤×) equipped with continuous functions π1 and π2 is
called a product of D and D′.

3. Given dcpos (D,≤), (D′,≤′), and (E,≤′′), and a continuous function
f : D × D′ → E, there is a dcpo (D′ →cont E,≤ext) equipped with
continuous functions

curry(f) : D→ (D′ → E) and eval : ((D′ → E) × D′)→ E,

where curry(f) is unique, such that curry(f) × idD′ : (D × D′) →
((D′ → E)×D′) is continuous, and f = eval◦ curry(f)× idD′ . A dcpo
(D′ →cont E,≤ext) equipped with continuous functions curry(f) and
eval is called an exponent of D, D′, and E.

It is easy to see that the cpo ({⊥},≤⊥) is a terminal object. The requirements
2. and 3. are more involved. We begin with 2.

Let (D,≤) and (D′,≤′) be dcpos. Define (D × D′,≤×) as follows: D × D′ is
the cartesian product of D and D′, and (x, x′) ≤× (y, y′) iff x ≤ y and x′ ≤′ y′.
Moreover, define π1 : D × D′ → D as π1(〈x, x′〉) = x, and π2 : D × D′ → D′

as π2(〈x, x′〉) = x′.

Proposition 3 (Products in Dcpo). Let (D,≤) and (D′,≤′) be dcpos. Then
(D × D′,≤×) with π1 and π2 is a product of D and D′.

Proof. We first need to show that (D × D′,≤×) is a dcpo. Let ∆ ⊆dir D ×
D′. Define ∆D = {x | 〈x, x′〉 ∈ ∆} and ∆D′ = {x′ | 〈x, x′〉 ∈ ∆}. Then
〈
∨

∆D,
∨

∆D′〉 is the lub of ∆. To see why, let 〈z, z′〉 be an upper bound for
∆. Then, z is an upper bound for ∆D and z′ is an upper bound for ∆D′ . Since∨

∆D is a lub for ∆D, it follows that
∨

∆D ≤ z. Similarly,
∨

∆D′ ≤
′ z′. Thus,

〈
∨

∆D,
∨

∆D′〉 ≤× 〈z, z′〉.

We also need to show that π1 and π2 are continuous. By symmetry, we
only need consider π1. Assume 〈x, x′〉 ≤× 〈y, y′〉. Then π1(〈x, x′〉) = x ≤ y =

π1(〈y, y′〉). Thus, π1 is monotonic. Let ∆ ⊆dir D×D′. Then π1(
∨

∆) =
∨

∆D.
Moreover, since π1(∆) = ∆D, it follows that

∨
π1(∆) =

∨
∆D. Thus π1 is

continuous.

Finally, let (E,≤′′) be a dcpo with continuous functions f : E → D and
g : E → D′. We need to show that there is a unique function 〈 f , g〉 : E →

5

D×D′ such that f = π1 ◦ 〈 f , g〉 and g = π2 ◦ 〈 f , g〉. First, we show that 〈 f , g〉
is continuous.

Let x ≤′′ y. Since f and g are continuous, it follows that f (x) ≤ f (y) and
g(x) ≤′ g(y). Thus, 〈 f (x), g(x)〉 ≤× 〈 f (y), g(y)〉. Hence 〈 f , g〉 is monotonic.
Let ∆ ⊆dir E. Since 〈 f , g〉 is monotonic, we have

∨
〈 f , g〉(∆) ≤× 〈 f , g〉(

∨
∆).

Since f and g are continuous, we have the following:∨
{ f (x) | x ∈ ∆} = f (

∨
∆) = f (

∨
∆)∨

{g(x) | x ∈ ∆} = g(
∨

∆) = g(
∨

∆).

Let
∨
〈 f , g〉(∆) = 〈z, z′〉. Then z is an upper bound for { f (x) | x ∈ ∆} and

z′ is an upper bound for {g(x) | x ∈ ∆}. Thus
∨
{ f (x) | x ∈ ∆} ≤ z and∨

{g(x) | x ∈ ∆} ≤′ z′. Hence 〈 f , g〉(
∨

∆) ≤×
∨
〈 f , g〉(∆). Extensionality

ensures the uniqueness of 〈 f , g〉. �

We have shown that the category Dcpo is closed under products. A simple
addition to the argument shows that Cpo is also closed under products. We
now move on to 3.

Let (D,≤) and (D′,≤′) be dcpos. Define (D →cont D′,≤ext) as follows:
D →cont D′ is the set of continuous functions from D to D′, and f ≤ext g iff
for all x ∈ D, f (x) ≤′ g(x).

We need the following lemmas. The proofs are left as an exercise.

Lemma 1. Let (D,≤) and (D′,≤′) be dcpos. Then (D →cont D′,≤ext) is a
dcpo. If (D,≤) and (D′,≤′) are cpos, then (D→cont D′,≤ext) is a cpo.

Lemma 2. Let (D,≤), (D′,≤′), and (E,≤′′) be dcpos. A function f : D ×
D′ → E is continuous iff for all x ∈ D (y ∈ D′) the functions fx : D′ →
E (fy(x) : D → E) defined by fx(y) = f (〈x, y〉) (fy(x) = f (〈x, y〉)) are
continuous.

Let (D,≤), (D′,≤′), (E,≤), and (E′,≤′) be dcpos, and let f : D → D′ and
g : E → E′ be continuous functions. Define f × g : D(×E) → (D′ × E′) as
f × g(〈x, x′〉) = 〈 f (x), g(x′)〉.

Proposition 4. The function f × g(〈x, x′〉) = 〈 f (x), g(x′)〉 is continuous.

Proof. The proof is similar to that of 〈 f , g〉. �

6

Proposition 5 (Exponents in Dcpo). Let (D,≤), (D′,≤′) and (E,≤′′) be dc-
pos, and let f : D × D′ → E be a continuous function. Then the dcpo
(D′ →cont E,≤ext) equipped with continuous functions

curry(f) : D→ (D′ → E) and eval : ((D′ → E) × D′)→ E,

defined as curry(f)(x)(y) = f (〈x, y〉) and eval(〈 f , x〉) = f (x), respectively,
is an exponent of D, D′, and E.

Proof. We need to show that curry(f) is continuous. Let x ≤ y. Notice that
curry(f)(x) = fx(x′) and curry(f)(y) = fy(x′) for x′ ∈ D′. Let x′ ∈ D′. Then
fx(x′) = f (〈x, x′〉) and fy(x′) = f (〈y, x′〉). Since 〈x, x′〉 ≤× 〈y, x′〉 and f is
continuous, it follows that f (〈x, x′〉) ≤′′ f (〈y, x′〉). Since x′ was arbitrary,
curry(f)(x) ≤ext curry(f)(y).

To see that curry(f)(
∨

∆) ≤ext
∨

curry(f)(∆), let x ∈ D′. Then

curry(f)(
∨

∆)(x′) = f (〈
∨

∆, x′〉) =
∨

f (〈∆, x′〉) =
∨
{ f (〈δ, x′〉) | δ ∈ ∆}.

Let g =
∨

curry(f)(∆) =
∨
{curry(f)(δ) | δ ∈ ∆}. Then for all δ ∈ ∆,

f (〈δ, x′〉) = curry(f)(δ)(x′) ≤′′ g(x′). Since x′ was arbitrary, g is an upper
bound for { f (〈δ, x′〉) | δ ∈ ∆}. Hence

∨
{ f (〈δ, x′〉) | δ ∈ ∆} ≤ext g.

Since curry(f) and idD′ are continuous, it follows that curry(f) × idD′ is
continuous.

We need to show that eval is continuous. Let 〈 f , x〉 ≤× 〈g, y〉. Then, since
f ≤ext g, eval(〈 f , x〉) = f (x) ≤′′ g(x) ≤′′ g(y) = eval(〈g, y〉). Thus eval is
monotonic.

To show that eval is continuous it is enough to show that eval(〈 , x′〉) and
eval(〈 f , 〉) are continuous for all f ∈ D′ → E and x′ ∈ D, respectively. By
extensionality, eval(〈 f , 〉) = f () for all f ∈ (D′ → E), and is by assumption
continuous.

Let x′ ∈ D′. The monotonicity of eval(〈 , x′〉) is trivial since f ≤ext g implies
that eval(〈 f , x′〉) = f (x′) ≤′′ g(x′) = eval(〈g, x′〉). Let ∆ ⊆dir (D′ → E). We
need to show that eval(〈

∨
∆, x′〉) =

∨
eval(〈∆, x′〉). That is, (

∨
∆)(x′) =∨

{δ(x′) | δ ∈ ∆}. This follows from f () =
∨

∆() being the lub of ∆.

To see that f = eval ◦ curry(f) × idD′ , let 〈x, x′〉 ∈ D × D′. Then curry(f) ×
idD′(〈x, x′〉) = 〈curry(f)(x), x′〉, and eval(〈curry(f)(x), x′〉) = f (〈x, x′〉). �

7

We have shown that Dcpo satisfies 1., 2. and 3. and so is a bona fide ccc. It
is easy to augment the proofs above to directly show that Cpo is also a ccc.
In the next section, we show that the abstract programming language PCF
is naturally interpreted in Cpo.

2 Syntax and Semantics of PCF

3 Scott Topologies

3.1 Topologies and Bases

Before proceeding, we need a few definitions and concepts from basic topol-
ogy.

Definition 6. Let X be a set. A topology on X is a set T ⊆ ℘(X) such that ∅
and X are in T , and T is closed under infinite unions and finite intersections.
A topological space is a set X together with a topology T on X, typically
written as the ordered pair (X,T).

Let (X,T) be a topological space. The sets in T are called open, and the
complements of open sets are called closed. For example, both X and ∅ are
in T , and thus open. Moreover, Xc = ∅ and ∅c = X, thus both X and ∅ are
also closed. Sets that are both open and closed are called clopen.

Example 10. Let W be any set, and let P = ℘(X). Then (W, P) is a topo-
logical space. Clearly, ∅,W ∈ P, by definition of powerset, and it is easy to
verify that P is closed under both union and intersection.2

Definition 7. A basis over X is a collection B of subsets of X such that

1. For each x ∈ X, there is at least one basis element B containing x.
2. If x belongs to the intersection of two basis elements B1 and B2, then

there is a basis element B3 containing x such that B3 ⊆ B1 ∩ B2.

2Formal semanticists can think of W as the set of possible worlds and P as the set of all
propositions.

8

Definition 8. IfB satisfies the two conditions in Definition 7, then we define
the topology generated by B as follows: A subset U of X is open if for each
x ∈ U, there is a basis element B ∈ B such that x ∈ B and B ⊆ U. If T is the
topology generated by B, then B is called a basis for T .

Example 11. Let Q = {(q1, q2) | q1, q2 ∈ Q, q1 < q2}. Then Q is a basis
for R. Indeed, let r ∈ R. Then the open interval (int(r) − 1, int(r) + 1) ∈ Q
contains r3. Let (q1, q2), (p1, p2) ∈ Q such that both contain r. If (q1, q2) ⊆
(p1, p2), then (q1, q2) serves as the set we need. A similar argument holds
if (p1, p2) ⊆ (q1, q2), Assume that (q1, q2) * (p1, p2), and without loss of
generality, assume that q2 < p2. Then r ∈ (p1, q2) ⊆ (q1, q2) ∩ (p1, p2).

Proposition 6. Let X be a set, and let B be a basis for a topology T on X.
Then T is the collection of all unions of elements of B.

Example 12. Given Example 11, we have that Q = {
⋃

Q′ | Q′ ⊆ Q} is the
topology generated by Q. Moreover, (R,Q) is a topological space.

Definition 9. Let (X,T) and (Y, S) be topological spaces. A function f :
X → Y is called continuous if, for all open sets U ∈ S , f −1(U) ∈ T .

Example 13. Let (R,Q) be the topological space in Example 12, and let f :
R → R be the function f (x) = x2. Then f is continuous (in the topological
sense). To see why this is, consider an open set U = (4, 25). Then f −1(U) =

(−5,−2) ∪ (2, 5). Since (−5,−2) and (2, 5) are open, so is f −1(U). Thus the
inverse image of U is open. This is true in general, thus f is continuous.

3.2 Scott Topologies

We now look at topologies based on partial orders. Let (D,≤) be a partial
order. A subset A ⊆ D is upper closed under ≤. if, for x ∈ A and x ≤ y, it
follows that y ∈ A. The Alexandrov topology on D, denoted A, is the set of
upper closed subsets of D. That is, (D,A) is a topological space.

We can also recover partial orders from (T0) topologies. Let (X,T) be a (T0)
topological space. Define the specialization order on X as x ≤ y iff for all
U ∈ T , if x ∈ U, then y ∈ U. It is easy to verify that ≤ is a partial order
(assuming T is T0).

3int(r) is the integer portion of r.

9

We now define topologies that are based on dcpos.

Definition 10. Let (D,≤) be a dcpo. A subset A ⊆ D is called Scott open if
the following hold:

• A is upper closed under ≤, i.e. if x ∈ A and x ≤ y, then y ∈ A.
• If ∆ ⊆ is directed and

∨
∆ ∈ A, then there is an x ∈ ∆ such that x ∈ A.

Proposition 7. Let (D,≤) be a dcpo and let ΩD be the set of Scott open
subsets of D. Then (D,ΩD) is a topological space.

Proof. Clearly, ∅,D ∈ ΩD. Assume S ⊆ ΩD and let x ∈
⋃

S . Then x ∈ A
for some A ∈ S . Let y ∈ D such that x ≤ y. Since A is upper closed under
≤, it follows that y ∈ A. Thus y ∈

⋃
S . Let ∆ ⊆dir D such that

∨
∆ ∈
⋃

S .
Then

∨
∆ ∈ A for some A ∈ S . Since A is Scott open, there is a z ∈ ∆ such

that z ∈ A. Thus z ∈
⋃

S .

Assume S is of finite cardinality. Let x ∈
⋂

S . Then x ∈ A for each A ∈ S .
Let y ∈ D such that x ≤ y. Since each A is upper closed under ≤, it follows
that y ∈ A, for each A. Thus y ∈

⋂
S . Let ∆ ⊆dir D such that

∨
∆ ∈
⋂

S .
Then

∨
∆ ∈ A for each A ∈ S . Since A is Scott open, for each A, there is a

zA ∈ ∆ such that zA ∈ A. Since ∆ is directed, there is a z ∈ ∆ such that zA ≤ z
for each zA. Thus z ∈ A for each A. Hence z ∈

⋂
S . �

The topological space (D,ΩD) is called the Scott topology over D.

Lemma 3. Let (D,≤) be a dcpo. The specialization order ≤′ on (D,ΩD) is
the partial order ≤.

Proof. We need to show set equality of the relations ≤′ and ≤. Let (x, y) ∈≤,
and let U ∈ ΩD. Suppose x ∈ U. Since U is upper closed under ≤, and
x ≤ y, it follows that y ∈ U. That is, (x, y) ∈≤′. Thus, ≤⊆≤′. Now, let
(x′, y′) ∈≤′. Notice that Uy′ = {a ∈ D | a � y′} is Scott open, and hence in
ΩD. Suppose x′ � y′. Then x′ ∈ Uy′ , and since (x′, y′) ∈≤′, it follows that
y′ ∈ Uy′ . Yet, this is a contradiction. Thus x′ ≤ y′, and so ≤′⊆≤. �

Lemma 4. Let (D,≤) and (D′,≤′) be dcpos. The (topologically) continu-
ous functions from (D,ΩD) to (D′,ΩD′) are the (order theoretic) continuous
functions from (D,≤) to (D′,≤′).

10

Proof. Let f : D → D′ be (topologically) continuous. We need to show
that f is monotonic. Assume x ≤ y. We need to show that f (x) ≤′ f (y).
Let U′ ∈ ΩD′ be any open set containing f (x). Now, f −1(U′) is an open set
containing x, and thus contains y. Hence, f (y) ∈ U′. Since U′ was arbitrary,
it follows that x ≤′ y.

We need to show that f (
∨

∆) =
∨

f (∆), for directed ∆. By monotonicity,
we immediately have that

∨
f (∆) ≤′ f (

∨
∆). Suppose f (

∨
∆) �′

∨
f (∆).

Then f (
∨

∆) ∈ U∨ f (∆) = {a ∈ D′ | a �′
∨

f (∆)}. Thus,
∨

∆ ∈ f −1(U∨ f (∆)),
and so f (δ) ∈ U∨ f (∆) for some δ ∈ ∆. This is a contradiction since f (δ) ≤′∨

f (∆). �

3.3 Algebraicity and Partial Continuity

Definition 11. Let (D,≤) be a dcpo. an element d ∈ D is called compact if,
for each ∆ ⊆dir D, from d ≤

∨
Delta it follows that there is x ∈ ∆ such that

d ≤ x.

We denote the set of compact elements of D by K(D). That is, K(D) = {d ∈
D | d is compact }. The set K(D) is called the basis of D. We will show that
the elements of K(D) indeed yield a basis for the Scott topology on (D,ΩD),
when the following definition holds on (D,≤).

Definition 12. Let (D,≤) be a dcpo. Then (D,≤) is called algebraic if for
all x ∈ D the set K(D)x = {d ∈ K(D) | d ≤ x} is directed, and

∨
K(D)x = x.

The elements of K(D)x are called approximants of x. To see why, consider
the following example.

Example 14. The dcpo (℘(ω),⊆) is algebraic. Let ∆odd be the set of all
sets of odd numbers. Then

∨
∆odd = {a ∈ ω | a is odd }. Now,

∨
∆odd

is an infinite set, and K(D)∨∆odd is the set of all finite sets of odd numbers.
That is, K(D)∨∆odd = {{1}, {1, 3}, {1, 3, 5}, . . .}. Each set in K(D)∨∆odd is an
approximation of

∨
∆odd, and as the sets in K(D)∨∆odd get larger, they better

approximate
∨

∆odd.

Proposition 8. Let (D,≤) be and algebraic dcpo. Let ↑ d = {x ∈ D | d ≤ x}.
Then B = {↑ d | d ∈ K(D)} is a basis for (D,ΩD).

11

Proof. We need to show that B is a basis. Let x ∈ D. Since D is algebraic,
x =
∨

K(D)x, and so x ∈↑ d for each d ∈ K(D)x. Let x ∈↑ d∩ ↑ e. Then
d, e ∈ K(D)x. Since K(D)x is directed, there is a z ∈ K(D)x such that d ≤ z
and e ≤ z. Thus ↑ z ⊆↑ d and ↑ z ⊆↑ e. Thus ↑ z ⊆ (↑ d∩ ↑ e).

Finally, notice that each ↑ d is Scott open. Indeed, let
∨

∆ ∈↑ d. Then
d ≤

∨
∆, and by compactness of d, there is a z ∈ ∆ such that d ≤ z.

Hence z ∈↑ d. Let A ∈ ΩD, and let x ∈ A. Since D is algebraic, and since∨
K(D)x = x ∈ A, there is a compact d such that d ∈ A. Thus, ↑ d ⊆ A.

Thus ΩD is the topology generated by B. �

We conclude this section with a definition of partial continuous function,
and its role in the categorical theory of dcpos. Let X and Y be sets. A
partial function f : X → Y is a function f : X′ → Y such that X′ ⊆ X. The
set X′ is called the domain of f , and is denoted dom(f).

Definition 13. Let (D,≤) and (D′,≤′) be dcpos. A partial function f : D→
D′ is called continuous if dom(f) is Scott open, and f restricted to dom(f)
is continuous. That is, f : dom(f)→ D′ is continuous.

We will use the following category in our discussion of monads. For now,
we simply give a definition.

Definition 14. The category pDcpo has dcpos as objects and partial contin-
uous functions as arrows.

4 The syntax and semantics of control

A The λ-Calculus

Much of the following material is drawn from Gunter (1992). Let Σ1 be a
collection of type constants, or basic types. We form the types over Σ1 with
the context-free grammar:

S ::= 1 | A | S → S | S × S

12

where A ∈ Σ1, and 1 is the null product type. That is, the types over Σ1 are
the trees generated by this grammar.

Let Σ0 be a function from term constants to types over Σ1. The pair Σ =

(Σ0,Σ1) is called a signature. We form the terms over Σ0 with the context-
free grammar:

T ::= ∗ | a | x | λxT | TT | (T ,T) | π(T) | π′(T)

where x is a variable and (a, A) ∈ Σ0. The ∗ is a special constant of type
1. The terms over Σ0 are the trees generated by this grammar, called term
trees. Equivalence classes of term trees modulo ≡α are called λ-terms, or
simply terms. Free variables and substitution are defined in the usual way.

Herein we use Latin minuscules as metavariables ranging over λ-terms. Let
Σ = (Σ0,Σ1) be a signature. A type assignment is a (possibly empty) list Γ

of pairs x : A, where x is a variable and A a type, such that the variables in
Γ are distinct.

A typing judgment is a triple consisting of a type assignment Γ, a term a,
and a type A such that all of the free variables of a occur in Γ. LetA be the
collection of all type assignments, and let Λ0 be the collection of all λ-terms
and Λ1 be the collection of all types. Let

J = {(Γ, a, A) ∈ A × Λ0 × Λ1 | all the free variables in a occur in Γ}.

That is, J is the collection of all typing judgments. We define B : ⊆ J to
be the least relation closed under the axioms and rules in Table 1. We write
Γ B a : A to indicate that (Γ, a, A) ∈ B :. If Γ is empty, we write Ba : A. The
typing judgments that appear above the line in each rule are called premises,
and those below the line are called conclusions.

A typing derivation is a labelled tree where the labels are typing judgements,
the leaves are axioms and each non-leaf is labelled by the conclusion of a
rule whose premises are the labels of that non-leaf’s daughters. A term a
is of type A iff Γ B a : A is the conclusion of some typing derivation. If
Γ B a : A and Γ B a : A′, then A = A′.

An equation is a four-tuple (Γ, a, b, A) where Γ is a type assignment, ΓBa : A
and Γ B b : A. We typically write equations as (Γ B a = b : A). Let T be a
set of equations. We write T ` (Γ B a = b : A) if (Γ B a = b : A) ∈ T . The

13

V-P Γ, x : A,Γ′ B x : A P
Γ B a : A Γ B b : B

Γ B (a, b) : A × B

C Γ B c : Σ0(c) F
Γ B h : A × B
Γ B π(h) : A

N P Γ B ∗ : 1 S
Γ B h : A × B
Γ B π′(h) : B

A
Γ, x : A B b : B

Γ B λxb : A→ B
P

Γ, x : B, y : C,Γ′ B a : A
Γ, y : C, x : B,Γ′ B a : A

A
Γ B f : A→ B Γ B a : A

Γ B f (a) : B
W

Γ B a : A (x < Γ)
Γ, x : B B a : A

Table 1: Typing rules

statement T ` (Γ B a = b : A) is called an equational judgment. We write
` (Γ B a = b : A) to indicate that (Γ B a = b : A). is to be included in every
theory.

An equational theory is a set of equations closed under the axioms and rules
in Table 2. The equational judgments that appear above the line in each rule
are called premises, and those below the line are called conclusions. An
equational derivation is defined exactly as a typing derivation, with equa-
tional judgements in place of typing judgements.

Definition 15. An equational theory that satisfies the rules in Table 3 is
called a λ-theory.

References
Amadio, R. M., & Curien, P. L. (1998). Domains and Lambda-Calculi.

Cambridge University Press.

Gunter, C. (1992). Semantics of Programming Languages. The MIT Press.

14

A
T ` (Γ B a = b : A) (x : B < Γ)

T ` (Γ, x : B B a = b : A)

D
T ` (Γ, x : B B a = b : A) (x < Fv(a) ∪ Fv(b))

T ` (Γ B a = b : A)

P
T ` (Γ, x : B, y : C,Γ′ B a = b : A)
T ` (Γ, y : C, x : B,Γ′ B a = b : A)

R ` (Γ B a = a : A)

S
T ` (Γ B a = b : A)
T ` (Γ B b = a : A)

T
T ` (Γ B a = b : A) T ` (Γ B b = c : A)

T ` (Γ B a = c : A)

µ
T ` (Γ B a = b : A→ B) T ` (Γ B c = d : A)

T ` (Γ B a(c) = b(d) : B)

ξ
T ` (Γ, x : A B a = b : B)

T ` (Γ B λxa = λxb : A→ B)

Table 2: Equational Rules

N P ` (Γ B a = ∗ : 1)

β ` (Γ B (λxb)(a) = [a/x]b : B)

η ` (Γ B λx f (x) = f : A→ B) (x < Fv(f))

F- ` (Γ B π(a, b) = a : A)

S- ` (Γ B π′(a, b) = b : B)

P- ` (Γ B (π(a, b), π′(a, b)) = (a, b) : A × B)

Table 3: λ-rules

15

