
Complete Partial Orders, PCF, and Control

Andrew R. Plummer

TIE Report Draft – February 2010

Abstract

We develop the theory of directed complete partial orders and
complete partial orders. We review the syntax of the abstract pro-
gramming language PCF, and present its interpretation into the carte-
sian closed category of complete partial orders. We then present cat-
egory theoretic interpretations for control operators. This material is
mostly drawn from Chapters 1, 6, and 8 in Amadio & Curien (1998).

Introduction

Just a few words about where this is going. We want to understand contin-
uations, so we have determined the following path to understanding them:

Continuations

The syntax and semantics of control operators

The syntax and semantics of PCF

Cpos as CCCs Syntax and semantics of λ-theories

We assume familiarity with the syntax and semantics of λ-theories, thus it
will be covered only in passing. We assume the reader has some exposure

1

to category theory, though we will present enough of it for readers without
extensive experience. Thus, we begin with the category theory of cpos (Sec-
tion 1), and work toward the syntax and semantics of PCF (Section 3). We
then present Scott topologies and the category of dcpos with partial con-
tinuous functions as arrows (Section 2). We then present the syntax and
semantics of control operators (Section 5).

1 Directed Complete Partial Orders

1.1 Definitions and Examples

Definition 1. Given a partial order (D,≤), a non-empty subset ∆ ⊆ D is
called directed if, for all x, y ∈ ∆, there is a z ∈ ∆ such that x ≤ z and y ≤ z.

We write ∆ ⊆dir D if ∆ is a directed subset of D.

Example 1. The natural numbers N with the usual ≤ relation is a partial
order (N,≤). Let ∆ be any subset of N, and consider x, y ∈ ∆. It is easy to
see that z =max(x, y) ∈ ∆ is such that x ≤ z and y ≤ z. That is, ∆ ⊆dir N.

Definition 2. A partial order (D,≤) is called a directed complete partial
order (dcpo) if each ∆ ⊆dir D has a least upper bound (lub), denoted

∨
∆. A

directed complete partial order that has a least element, denoted ⊥, is called
a complete partial order (cpo).

Example 2. Let Nn be the set of the first n natural numbers. Then (Nn,≤)
is a dcpo. Moreover, since 0 ≤ k for all k ∈ Nn, (Nn,≤) is a cpo with least
element 0. Notice that (N,≤) is not a dcpo, since the set of odd natural
numbers has no least upper bound.

Example 3. Let Zn be the set of integers k such that k ≤ n. Then (Zn,≤) is
a dcpo. Notice that (Zn,≤) is not a cpo, since it has no least element.

Let (D,≤) be a partial order. An infinite ascending chain is a sequence
x0, x1, . . . , xn, . . . of distinct elements in D such that x0 ≤ x1 ≤ · · · ≤ xn · · · .
The unbounded sets N and Z are not suitable for forming dcpos, as they
contain infinite ascending chains (e.g. the set of odd natural numbers). The

2

upper bounds on their counterparts Nn and Zn disallow infinite ascending
chains, making both Nn and Zn suitable for dcpos. We can generalize this
observation.

Example 4. All partial orders without infinite ascending chains are dcpos.

The following example provides a method for constructing a cpo out of any
given set.

Example 5. Let X be any set. Define X⊥ = X ∪ {⊥} where ⊥ < X, and for
x, y ∈ X⊥, define x ≤ y iff x = ⊥ or x = y. Then (X⊥,≤) is a cpo.

A cpo X⊥ constructed this way is called flat, due to the appearance of its
hasse diagram. The following examples of flat cpos will be important in
later developments.

Example 6. Let B = {tt,ff}, where tt and ff are called truth values. Let ω be
the smallest infinite limit ordinal. Then both B⊥ and ω⊥ are flat cpos.

Definition 3. Let (D,≤) and (D′,≤′) be partial orders. A function f : D →
D′ is called monotonic if, for all x, y ∈ D, if x ≤ y, then f (x) ≤′ f (y).

Example 7. Let f : N → N be the function f (n) = n + 1. Then f is
monotonic, given the partial order (N,≤).

Example 8. Let f : Nn → Nn+1 be defined as above. Then f is monotonic,
given the partial orders (Nn,≤) and (Nn+1,≤).

Definition 4. Let (D,≤) and (D′,≤′) be dcpos. A function f : D → D′ is
called continuous if f is monotonic and, for all ∆ ⊆dir D, f (

∨
∆) =

∨
f (∆)1.

When the second condition in the definition is satisfied, we say that f pre-
serves directed lubs.

Example 9. Consider (Nn,≤) and (Nn+1,≤), and f : Nn → Nn+1 defined
in Example 7. We want to show that f is continuous. We have already
established that f is monotonic. We just need to show that f preserves
directed lubs. Let ∆ ⊆dir Nn. Then

∨
∆ is simply the largest natural number

1 f (∆) = { f (δ) | δ ∈ ∆}.

3

in ∆, call it δ. Since k ≤ δ for all k ∈ ∆, it follows from the monotonicity
of f that f (k) ≤ f (δ) for all k ∈ ∆. That is, f (δ) is the largest natural
number in f (∆), hence

∨
f (∆) = f (δ) = f (

∨
∆). Since ∆ was arbitrary, f

is continuous.

Proposition 1. Let (D,≤) be a dcpo, and let idD be the identity function on
D. Then idD is a continuous function.

Proof. For x, y ∈ D such that x ≤ y, clearly idD(x) = x ≤ y = idD(y). Let
∆ ⊆dir D. We have idD(

∨
∆) =

∨
∆, and

∨
idD(∆) =

∨
∆. �

Proposition 2. Let (D,≤), (D′,≤′), and (D′′,≤′′) be dcpos, and let f : D→
D′ and g : D′ → D′′ be continous functions. Then g ◦ f : D → D′′ is
continuous.

Proof. Let x, y ∈ D such that x ≤ y. Then f (x) ≤′ f (y), and so g(f (x)) ≤′′

g(f (y)). Thus, g ◦ f is monotonic. Let ∆ ⊆dir D. We need to show that
g(f (
∨

∆)) =
∨

g(f (∆)). Since f is continuous, g(f (
∨

∆)) = g(
∨

f (∆)),
and since g is continuous, g(

∨
f (∆)) =

∨
g(f (∆)). �

1.2 The Categories Dcpo and Cpo

Propositions 1 and 2 allow us to define the following categories.

Definition 5. The category Dcpo has dcpos as objects and continuous func-
tions as arrows. The category Cpo is the full subcategory of Dcpo with cpos
as objects.

Checking in detail that Dcpo and Cpo are categories is left as an exercise.
We now want to show that Dcpo and Cpo are cartesian closed categories
(ccc), and thus induce λ-theories. We need to show the following:

1. There is a cpo (T,≤) such that for every dcpo (D,≤′), there is exactly
one continuous function 1D : D → T . A cpo (T,≤) satisfying this
condition is called a terminal object.

2. Given dcpos (D,≤) and (D′,≤′), there is a dcpo (D×D′,≤×) equipped
with continuous functions π1 and π2 such that for any dcpo (E,≤′′

) with continuous functions f : E → D and g : E → D′, there

4

is a unique continuous function 〈 f , g〉 : E → D × D′, defined as
〈 f , g〉(x) = 〈 f (x), g(x)〉, such that f = π1 ◦ 〈 f , g〉 and g = π2 ◦ 〈 f , g〉.
A dcpo (D × D′,≤×) equipped with continuous functions π1 and π2 is
called a product of D and D′.

3. Given dcpos (D,≤), (D′,≤′), and (E,≤′′), and a continuous function
f : D × D′ → E, there is a dcpo (D′ →cont E,≤ext) equipped with
continuous functions

curry(f) : D→ (D′ → E) and eval : ((D′ → E) × D′)→ E,

where curry(f) is unique, such that curry(f) × idD′ : (D × D′) →
((D′ → E)×D′) is continuous, and f = eval◦ curry(f)× idD′ . A dcpo
(D′ →cont E,≤ext) equipped with continuous functions curry(f) and
eval is called an exponent of D, D′, and E.

It is easy to see that the cpo ({⊥},≤⊥) is a terminal object. The requirements
2. and 3. are more involved. We begin with 2.

Let (D,≤) and (D′,≤′) be dcpos. Define (D × D′,≤×) as follows: D × D′ is
the cartesian product of D and D′, and (x, x′) ≤× (y, y′) iff x ≤ y and x′ ≤′ y′.
Moreover, define π1 : D × D′ → D as π1(〈x, x′〉) = x, and π2 : D × D′ → D′

as π2(〈x, x′〉) = x′.

Proposition 3 (Products in Dcpo). Let (D,≤) and (D′,≤′) be dcpos. Then
(D × D′,≤×) with π1 and π2 is a product of D and D′.

Proof. We first need to show that (D × D′,≤×) is a dcpo. Let ∆ ⊆dir D ×
D′. Define ∆D = {x | 〈x, x′〉 ∈ ∆} and ∆D′ = {x′ | 〈x, x′〉 ∈ ∆}. Then
〈
∨

∆D,
∨

∆D′〉 is the lub of ∆. To see why, let 〈z, z′〉 be an upper bound for
∆. Then, z is an upper bound for ∆D and z′ is an upper bound for ∆D′ . Since∨

∆D is a lub for ∆D, it follows that
∨

∆D ≤ z. Similarly,
∨

∆D′ ≤
′ z′. Thus,

〈
∨

∆D,
∨

∆D′〉 ≤× 〈z, z′〉.

We also need to show that π1 and π2 are continuous. By symmetry, we
only need consider π1. Assume 〈x, x′〉 ≤× 〈y, y′〉. Then π1(〈x, x′〉) = x ≤ y =

π1(〈y, y′〉). Thus, π1 is monotonic. Let ∆ ⊆dir D×D′. Then π1(
∨

∆) =
∨

∆D.
Moreover, since π1(∆) = ∆D, it follows that

∨
π1(∆) =

∨
∆D. Thus π1 is

continuous.

Finally, let (E,≤′′) be a dcpo with continuous functions f : E → D and
g : E → D′. We need to show that there is a unique function 〈 f , g〉 : E →

5

D×D′ such that f = π1 ◦ 〈 f , g〉 and g = π2 ◦ 〈 f , g〉. First, we show that 〈 f , g〉
is continuous.

Let x ≤′′ y. Since f and g are continuous, it follows that f (x) ≤ f (y) and
g(x) ≤′ g(y). Thus, 〈 f (x), g(x)〉 ≤× 〈 f (y), g(y)〉. Hence 〈 f , g〉 is monotonic.
Let ∆ ⊆dir E. Since 〈 f , g〉 is monotonic, we have

∨
〈 f , g〉(∆) ≤× 〈 f , g〉(

∨
∆).

Since f and g are continuous, we have the following:∨
{ f (x) | x ∈ ∆} = f (

∨
∆) = f (

∨
∆)∨

{g(x) | x ∈ ∆} = g(
∨

∆) = g(
∨

∆).

Let
∨
〈 f , g〉(∆) = 〈z, z′〉. Then z is an upper bound for { f (x) | x ∈ ∆} and

z′ is an upper bound for {g(x) | x ∈ ∆}. Thus
∨
{ f (x) | x ∈ ∆} ≤ z and∨

{g(x) | x ∈ ∆} ≤′ z′. Hence 〈 f , g〉(
∨

∆) ≤×
∨
〈 f , g〉(∆). Extensionality

ensures the uniqueness of 〈 f , g〉. �

We have shown that the category Dcpo is closed under products. A simple
addition to the argument shows that Cpo is also closed under products. We
now move on to 3.

Let (D,≤) and (D′,≤′) be dcpos. Define (D →cont D′,≤ext) as follows:
D →cont D′ is the set of continuous functions from D to D′, and f ≤ext g iff
for all x ∈ D, f (x) ≤′ g(x).

We need the following lemmas. The proofs are left as an exercise.

Lemma 1. Let (D,≤) and (D′,≤′) be dcpos. Then (D →cont D′,≤ext) is a
dcpo. If (D,≤) and (D′,≤′) are cpos, then (D→cont D′,≤ext) is a cpo.

Lemma 2. Let (D,≤), (D′,≤′), and (E,≤′′) be dcpos. A function f : D ×
D′ → E is continuous iff for all x ∈ D (y ∈ D′) the functions fx : D′ →
E (fy(x) : D → E) defined by fx(y) = f (〈x, y〉) (fy(x) = f (〈x, y〉)) are
continuous.

Let (D,≤), (D′,≤′), (E,≤), and (E′,≤′) be dcpos, and let f : D → D′ and
g : E → E′ be continuous functions. Define f × g : D(×E) → (D′ × E′) as
f × g(〈x, x′〉) = 〈 f (x), g(x′)〉.

Proposition 4. The function f × g(〈x, x′〉) = 〈 f (x), g(x′)〉 is continuous.

Proof. The proof is similar to that of 〈 f , g〉. �

6

Proposition 5 (Exponents in Dcpo). Let (D,≤), (D′,≤′) and (E,≤′′) be dc-
pos, and let f : D × D′ → E be a continuous function. Then the dcpo
(D′ →cont E,≤ext) equipped with continuous functions

curry(f) : D→ (D′ → E) and eval : ((D′ → E) × D′)→ E,

defined as curry(f)(x)(y) = f (〈x, y〉) and eval(〈 f , x〉) = f (x), respectively,
is an exponent of D, D′, and E.

Proof. We need to show that curry(f) is continuous. Let x ≤ y. Notice that
curry(f)(x) = fx(x′) and curry(f)(y) = fy(x′) for x′ ∈ D′. Let x′ ∈ D′. Then
fx(x′) = f (〈x, x′〉) and fy(x′) = f (〈y, x′〉). Since 〈x, x′〉 ≤× 〈y, x′〉 and f is
continuous, it follows that f (〈x, x′〉) ≤′′ f (〈y, x′〉). Since x′ was arbitrary,
curry(f)(x) ≤ext curry(f)(y).

To see that curry(f)(
∨

∆) ≤ext
∨

curry(f)(∆), let x ∈ D′. Then

curry(f)(
∨

∆)(x′) = f (〈
∨

∆, x′〉) =
∨

f (〈∆, x′〉) =
∨
{ f (〈δ, x′〉) | δ ∈ ∆}.

Let g =
∨

curry(f)(∆) =
∨
{curry(f)(δ) | δ ∈ ∆}. Then for all δ ∈ ∆,

f (〈δ, x′〉) = curry(f)(δ)(x′) ≤′′ g(x′). Since x′ was arbitrary, g is an upper
bound for { f (〈δ, x′〉) | δ ∈ ∆}. Hence

∨
{ f (〈δ, x′〉) | δ ∈ ∆} ≤ext g.

Since curry(f) and idD′ are continuous, it follows that curry(f) × idD′ is
continuous.

We need to show that eval is continuous. Let 〈 f , x〉 ≤× 〈g, y〉. Then, since
f ≤ext g, eval(〈 f , x〉) = f (x) ≤′′ g(x) ≤′′ g(y) = eval(〈g, y〉). Thus eval is
monotonic.

To show that eval is continuous it is enough to show that eval(〈 , x′〉) and
eval(〈 f , 〉) are continuous for all f ∈ D′ → E and x′ ∈ D, respectively. By
extensionality, eval(〈 f , 〉) = f () for all f ∈ (D′ → E), and is by assumption
continuous.

Let x′ ∈ D′. The monotonicity of eval(〈 , x′〉) is trivial since f ≤ext g implies
that eval(〈 f , x′〉) = f (x′) ≤′′ g(x′) = eval(〈g, x′〉). Let ∆ ⊆dir (D′ → E). We
need to show that eval(〈

∨
∆, x′〉) =

∨
eval(〈∆, x′〉). That is, (

∨
∆)(x′) =∨

{δ(x′) | δ ∈ ∆}. This follows from f () =
∨

∆() being the lub of ∆.

To see that f = eval ◦ curry(f) × idD′ , let 〈x, x′〉 ∈ D × D′. Then curry(f) ×
idD′(〈x, x′〉) = 〈curry(f)(x), x′〉, and eval(〈curry(f)(x), x′〉) = f (〈x, x′〉). �

7

We have shown that Dcpo satisfies 1., 2. and 3. and so is a bona fide ccc.
It is easy to augment the proofs above to directly show that Cpo is also a
ccc. In Section 3, we show that the abstract programming language PCF is
naturally interpreted in Cpo.

2 Scott Topologies

2.1 Topologies and Bases

Before proceeding, we need a few definitions and concepts from basic topol-
ogy.

Definition 6. Let X be a set. A topology on X is a set T ⊆ ℘(X) such that ∅
and X are in T , and T is closed under infinite unions and finite intersections.
A topological space is a set X together with a topology T on X, typically
written as the ordered pair (X,T).

Let (X,T) be a topological space. The sets in T are called open, and the
complements of open sets are called closed. For example, both X and ∅ are
in T , and thus open. Moreover, Xc = ∅ and ∅c = X, thus both X and ∅ are
also closed. Sets that are both open and closed are called clopen.

Example 10. Let W be any set, and let P = ℘(X). Then (W, P) is a topo-
logical space. Clearly, ∅,W ∈ P, by definition of powerset, and it is easy to
verify that P is closed under both union and intersection.2

Definition 7. A basis over X is a collection B of subsets of X such that

1. For each x ∈ X, there is at least one basis element B containing x.
2. If x belongs to the intersection of two basis elements B1 and B2, then

there is a basis element B3 containing x such that B3 ⊆ B1 ∩ B2.

Definition 8. IfB satisfies the two conditions in Definition 7, then we define
the topology generated by B as follows: A subset U of X is open if for each
x ∈ U, there is a basis element B ∈ B such that x ∈ B and B ⊆ U. If T is the
topology generated by B, then B is called a basis for T .

2Formal semanticists can think of W as the set of possible worlds and P as the set of all
propositions.

8

Example 11. Let Q = {(q1, q2) | q1, q2 ∈ Q, q1 < q2}. Then Q is a basis
for R. Indeed, let r ∈ R. Then the open interval (int(r) − 1, int(r) + 1) ∈ Q
contains r3. Let (q1, q2), (p1, p2) ∈ Q such that both contain r. If (q1, q2) ⊆
(p1, p2), then (q1, q2) serves as the set we need. A similar argument holds
if (p1, p2) ⊆ (q1, q2), Assume that (q1, q2) * (p1, p2), and without loss of
generality, assume that q2 < p2. Then r ∈ (p1, q2) ⊆ (q1, q2) ∩ (p1, p2).

Proposition 6. Let X be a set, and let B be a basis for a topology T on X.
Then T is the collection of all unions of elements of B.

Example 12. Given Example 11, we have that Q = {
⋃

Q′ | Q′ ⊆ Q} is the
topology generated by Q. Moreover, (R,Q) is a topological space.

Definition 9. Let (X,T) and (Y, S) be topological spaces. A function f :
X → Y is called continuous if, for all open sets U ∈ S , f −1(U) ∈ T .

Example 13. Let (R,Q) be the topological space in Example 12, and let f :
R → R be the function f (x) = x2. Then f is continuous (in the topological
sense). To see why this is, consider an open set U = (4, 25). Then f −1(U) =

(−5,−2) ∪ (2, 5). Since (−5,−2) and (2, 5) are open, so is f −1(U). Thus the
inverse image of U is open. This is true in general, thus f is continuous.

2.2 Scott Topologies

We now look at topologies based on partial orders. Let (D,≤) be a partial
order. A subset A ⊆ D is upper closed under ≤. if, for x ∈ A and x ≤ y, it
follows that y ∈ A. The Alexandrov topology on D, denoted A, is the set of
upper closed subsets of D. That is, (D,A) is a topological space.

We can also recover partial orders from (T0) topologies. Let (X,T) be a (T0)
topological space. Define the specialization order on X as x ≤ y iff for all
U ∈ T , if x ∈ U, then y ∈ U. It is easy to verify that ≤ is a partial order
(assuming T is T0).

We now define topologies that are based on dcpos.

Definition 10. Let (D,≤) be a dcpo. A subset A ⊆ D is called Scott open if
the following hold:

3int(r) is the integer portion of r.

9

• A is upper closed under ≤, i.e. if x ∈ A and x ≤ y, then y ∈ A.
• If ∆ ⊆ is directed and

∨
∆ ∈ A, then there is an x ∈ ∆ such that x ∈ A.

Proposition 7. Let (D,≤) be a dcpo and let ΩD be the set of Scott open
subsets of D. Then (D,ΩD) is a topological space.

Proof. Clearly, ∅,D ∈ ΩD. Assume S ⊆ ΩD and let x ∈
⋃

S . Then x ∈ A
for some A ∈ S . Let y ∈ D such that x ≤ y. Since A is upper closed under
≤, it follows that y ∈ A. Thus y ∈

⋃
S . Let ∆ ⊆dir D such that

∨
∆ ∈
⋃

S .
Then

∨
∆ ∈ A for some A ∈ S . Since A is Scott open, there is a z ∈ ∆ such

that z ∈ A. Thus z ∈
⋃

S .

Assume S is of finite cardinality. Let x ∈
⋂

S . Then x ∈ A for each A ∈ S .
Let y ∈ D such that x ≤ y. Since each A is upper closed under ≤, it follows
that y ∈ A, for each A. Thus y ∈

⋂
S . Let ∆ ⊆dir D such that

∨
∆ ∈
⋂

S .
Then

∨
∆ ∈ A for each A ∈ S . Since A is Scott open, for each A, there is a

zA ∈ ∆ such that zA ∈ A. Since ∆ is directed, there is a z ∈ ∆ such that zA ≤ z
for each zA. Thus z ∈ A for each A. Hence z ∈

⋂
S . �

The topological space (D,ΩD) is called the Scott topology over D.

Lemma 3. Let (D,≤) be a dcpo. The specialization order ≤′ on (D,ΩD) is
the partial order ≤.

Proof. We need to show set equality of the relations ≤′ and ≤. Let (x, y) ∈≤,
and let U ∈ ΩD. Suppose x ∈ U. Since U is upper closed under ≤, and
x ≤ y, it follows that y ∈ U. That is, (x, y) ∈≤′. Thus, ≤⊆≤′. Now, let
(x′, y′) ∈≤′. Notice that Uy′ = {a ∈ D | a � y′} is Scott open, and hence in
ΩD. Suppose x′ � y′. Then x′ ∈ Uy′ , and since (x′, y′) ∈≤′, it follows that
y′ ∈ Uy′ . Yet, this is a contradiction. Thus x′ ≤ y′, and so ≤′⊆≤. �

Lemma 4. Let (D,≤) and (D′,≤′) be dcpos. The (topologically) continu-
ous functions from (D,ΩD) to (D′,ΩD′) are the (order theoretic) continuous
functions from (D,≤) to (D′,≤′).

Proof. Let f : D → D′ be (topologically) continuous. We need to show
that f is monotonic. Assume x ≤ y. We need to show that f (x) ≤′ f (y).
Let U′ ∈ ΩD′ be any open set containing f (x). Now, f −1(U′) is an open set

10

containing x, and thus contains y. Hence, f (y) ∈ U′. Since U′ was arbitrary,
it follows that x ≤′ y.

We need to show that f (
∨

∆) =
∨

f (∆), for directed ∆. By monotonicity,
we immediately have that

∨
f (∆) ≤′ f (

∨
∆). Suppose f (

∨
∆) �′

∨
f (∆).

Then f (
∨

∆) ∈ U∨ f (∆) = {a ∈ D′ | a �′
∨

f (∆)}. Thus,
∨

∆ ∈ f −1(U∨ f (∆)),
and so f (δ) ∈ U∨ f (∆) for some δ ∈ ∆. This is a contradiction since f (δ) ≤′∨

f (∆). �

2.3 Algebraicity and Partial Continuity

Definition 11. Let (D,≤) be a dcpo. an element d ∈ D is called compact if,
for each ∆ ⊆dir D, from d ≤

∨
Delta it follows that there is x ∈ ∆ such that

d ≤ x.

We denote the set of compact elements of D by K(D). That is, K(D) = {d ∈
D | d is compact }. The set K(D) is called the basis of D. We will show that
the elements of K(D) indeed yield a basis for the Scott topology on (D,ΩD),
when the following definition holds on (D,≤).

Definition 12. Let (D,≤) be a dcpo. Then (D,≤) is called algebraic if for
all x ∈ D the set K(D)x = {d ∈ K(D) | d ≤ x} is directed, and

∨
K(D)x = x.

The elements of K(D)x are called approximants of x. To see why, consider
the following example.

Example 14. The dcpo (℘(ω),⊆) is algebraic. Let ∆odd be the set of all
sets of odd numbers. Then

∨
∆odd = {a ∈ ω | a is odd }. Now,

∨
∆odd

is an infinite set, and K(D)∨∆odd is the set of all finite sets of odd numbers.
That is, K(D)∨∆odd = {{1}, {1, 3}, {1, 3, 5}, . . .}. Each set in K(D)∨∆odd is an
approximation of

∨
∆odd, and as the sets in K(D)∨∆odd get larger, they better

approximate
∨

∆odd.

Proposition 8. Let (D,≤) be and algebraic dcpo. Let ↑ d = {x ∈ D | d ≤ x}.
Then B = {↑ d | d ∈ K(D)} is a basis for (D,ΩD).

Proof. We need to show that B is a basis. Let x ∈ D. Since D is algebraic,
x =
∨

K(D)x, and so x ∈↑ d for each d ∈ K(D)x. Let x ∈↑ d∩ ↑ e. Then

11

d, e ∈ K(D)x. Since K(D)x is directed, there is a z ∈ K(D)x such that d ≤ z
and e ≤ z. Thus ↑ z ⊆↑ d and ↑ z ⊆↑ e. Thus ↑ z ⊆ (↑ d∩ ↑ e).

Finally, notice that each ↑ d is Scott open. Indeed, let
∨

∆ ∈↑ d. Then
d ≤

∨
∆, and by compactness of d, there is a z ∈ ∆ such that d ≤ z.

Hence z ∈↑ d. Let A ∈ ΩD, and let x ∈ A. Since D is algebraic, and since∨
K(D)x = x ∈ A, there is a compact d such that d ∈ A. Thus, ↑ d ⊆ A.

Thus ΩD is the topology generated by B. �

We conclude this section with a definition of partial continuous function,
and its role in the categorical theory of dcpos. Let X and Y be sets. A
partial function f : X → Y is a function f : X′ → Y such that X′ ⊆ X. The
set X′ is called the domain of f , and is denoted dom(f).

Definition 13. Let (D,≤) and (D′,≤′) be dcpos. A partial function f : D→
D′ is called continuous if dom(f) is Scott open, and f restricted to dom(f)
is continuous. That is, f : dom(f)→ D′ is continuous.

We will use the following category in our discussion of monads. For now,
we simply give a definition.

Definition 14. The category pDcpo has dcpos as objects and partial contin-
uous functions as arrows.

3 Abstract Programming

4 Monads

4.1 Functors

In this section, we introduce transformation from one category to another.
These transformations, called functors, are essential to many theoretical
concepts in programming language theory, and practical applications in nat-
ural language theory. For example, in natural language theory the mapping
between a syntactic logic and a semantic logic is typically a functor, so long
as the logics themselves constitute categories. In programming language

12

theory, the concept of functional programming is founded entirely on cate-
gory theory, and functors are used to handle interactions between programs
and the real world. We will come back to these issues later. At present, we
formalize functors.

Definition 15. A functor F from a category C to a category D is a function
such that:

1. Each object a ∈ Ob(C) is mapped to an object F(a) ∈ Ob(D).
2. Each arrow f : a→ b in Ar(C) is mapped to an arrow F(f) : F(a)→

F(b) in Ar(D) such that:
(a) For all objects a ∈ Ob(C), the identity arrow on a is mapped to

the identity arrow on F(a). That is,

F(1a) = 1F(a).

(b) For all pairs 〈g, f 〉 where f , g ∈ Ar(C) and cod f = dom g,

F(g ◦ f) = F(g) ◦ F(f).

Condition (b) is better understood visually, using the following commutative
diagrams:

a
f //

g◦ f

��?
??

??
??

??
??

??
? b

g

��
c

F(a)
F(f) //

F(g◦ f)

��?
??

??
??

??
??

??
F(b)

F(g)

��
F(c)

If F is a functor from C toD, we write F : C → D or C
F
→ D. Before

proceeding, we define the following:

Definition 16 (Identity Functor). The identity functor on a category C is the
functor 1C : C→ C such that

1. for all a ∈ Ob(C), 1C(a) = a.
2. for all f ∈ Ar(C), 1C(f) = f .

Since functors are functions we immediately have the following:

13

Definition 17 (Functor Composition). Given functors F : A → B and G :
B → C, the composite of F and F, denoted G ◦ F, is the functor defined as
(G ◦ F)(a) = G(F(a)), for all a ∈ Ob(A); and (G ◦ F)(f) = G(F(f)), for all
f ∈ Ar(A).

Since functor composition is a special case of function composition, we
have that functor composition is associative. Hence, for all functors F :
A→ B, G : B→ C, and H : C→ D, we have H◦(G◦F) = (H◦G)◦F. This,
together with the identity functor, allows us to think of functors as arrows
between categories. Though this approach leads to some complications, it
will prove useful later on.

4.2 Natural Transformations

Let us quickly review our theoretical constructs thus far. We defined cate-
gories as mathematical constructs that contain objects and arrows. We then
defined functors as mappings between categories. At the end of the previ-
ous section, we provided the definitions needed to view categories as objects
and functors as arrows. That is, categories themselves can be the objects of
other categories, and functors the arrows. Now, we take the next step in
abstraction, and consider functors as objects of certain categories. To do so,
we need a reasonable concept of arrow between functors. We thus introduce
natural transformations.

Let C and D be categories, and let F : C → D and G : C → D be functors
from C to D. The image of F is a representation of the category C within
the category G. The image of G is similarly a representation of C within D.
Suppose we want to translate the representation F yields into the representa-
tion that G yields. And we want to do so in a way that preserves the structure
of the representation that F yields. We start with an object a ∈ Ob(C). The
object a is mapped to an object F(a) ∈ Ob(D) and an object G(a) ∈ Ob(D).
We want to translate the object F(a) onto G(a) using an arrow in D. We de-
note the translation arrow as τa : F(a) → G(a). Now, F itself preserves the
structure of C, that is, given an arrow f : a→ b in Ar(C), we have an arrow
F(f) : F(a)→ F(b) in Ar(D). So far, we have the following information:

14

a

f

��
b

F(a) τa //

F(f)

��

G(a)

F(b)

Now, the functor G also acts on f , yielding an arrow G(f) : G(a)→ G(b) in
Ar(D). In order to complete the translation, we need to translate F(f) onto
G(f). To do this, we first need to translate F(b) onto G(b) using an arrow
in D. We denote this translation arrow, as before, as τb : F(b) → G(b). We
now have all the information we need:

a

f

��
b

F(a) τa //

F(f)

��

G(a)

G(f)

��
F(b) τb

// G(b)

We simply check that the above diagram commutes for each a ∈ Ob(C)
and f : a → b in Ar(C). If so, we have a structure-preserving transfor-
mation of the representation of C in D given by F into the representation
of C in D given by G. The cumulative process just described is a natural
transformation from C to D. We provide the formal definition below.

Definition 18. Let C and D be categories, and let F : C → D and G :
C → D be functors from C to D. A natural transformation from F to G
is a collection of arrows τ, contained in Ar(D), such that: for each object
a ∈ Ob(C), there is an arrow τa : F(a) → G(a) in τ, called a component of
τ, such that for any arrow f : a → b in Ar(C), given τb : F(b) → G(b) ∈ τ,

15

we have G(f) ◦ τa = τb ◦ F(f). That is, the following diagram commutes:

F(a) τa //

F(f)

��

G(a)

G(f)

��
F(b) τb

// G(b)

If τ is a natural transformation from C to D, we write τ : C→ D, or C
τ
→ D,

We conclude this section by providing the definitions needed to form cate-
gories of functors. Specifically, given two categories C and D, we are inter-
ested in forming the functor category DC, whose objects are all the functors
from C to D. At this point it should be clear that a category with functors
as objects will have natural transformations as arrow. We need to have an
identity arrow 1F : F → F for each functor F.

Definition 19 (Identity Transformation). The identity transformation on a
functor F : C → D is the natural transformation 1F : F → F such that for
all a ∈ Ob(C),

τa = 1F(a) : F(a)→ F(a).

We also need a reasonable definition of natural transformation composition.
Let F, G, and H be functors from category C to category D, and let τ : F →
G and σ : G → H be natural transformations. Let f : a→ b be an arrow in
C. Consider the following diagram:

F(a) τa //

F(f)

��

G(a)

G(f)

��

σa // H(a)

H(f)

��
F(b) τb

// G(b) σb
// H(b)

16

To define a natural transformation (σ ◦ τ) from F to H, we need to define
(σ ◦ τ)a for each a ∈ Ob(C). Since F, G, and H are functors, the smaller
square diagrams commute. Thus,

(1) H(f) ◦ σa = σb ◦G(f)
(2) G(f) ◦ τa = τb ◦ F(f)

which yield:

(3) H(f) ◦ σa ◦ τa = σb ◦G(f)τa

(4) σb ◦G(f) ◦ τa = σb ◦ τb ◦ F(f)

By transitivity, (3) and (4) yield the equality

(5) H(f) ◦ σa ◦ τa = σb ◦ τb ◦ F(f).

We simply let (σ ◦ τ)a = σa ◦ τa for each a. Then (5) satisfies the definition
of a component of a natural transformation from F to H.

Definition 20 (Natural Transformation Composition). Let F, G, and H be
functors from category C to category D, and let τ : F → G and σ : G → H
be natural transformations. The composite of τ and σ is the collection of
arrows (σ ◦ τ)a = σa ◦ τa for all a ∈ Ob(C).

Natural transformation composition is, of course, associative. The proof is
left to the enthusiastic reader. Thus we have the functor category DC.

4.3 Introducing Monads

We postpone the mathematical treatment of monads to first develop the intu-
ition behind their usage. We briefly compare two programming paradigms,
imperative programming and declarative programming, and show how pro-
grams written in the imperative paradigm can be simulated in the declarative
paradigm.

17

In imperative programming, a program is a sequence of commands for the
computer to perform. For example, a programmer may instruct the com-
puter to take a list of numbers, add one to each number in the list, and then
square each number in the list. This sequence of commands in pseudocode
is:

Imperative Algorithm
Given A, a list of length n
for i = 1 to n do

A[i]← A[i] + 1
end for
for i = 1 to n do

A[i]← A[i] ∗ A[i]
end for

The algorithm specifies the commands to be carried out and the sequence
in which they are carried out. In contrast, declarative programming speci-
fies only the commands, with no explicit sequencing given. To develop the
contrast, we focus on functional programming, a kind of declarative pro-
gramming where all programming constructs are functions. The following
functional pseudocode simulates the imperative algorithm above:

Functional Algorithm
add1 :: [a]→ [a]
add1 [] = []
add1 (n:ns) = [n+1] ++ (add1 ns)

square :: [a]→ [a]
square [] = []
square (n:ns) = [n*n] ++ (square ns)

Given a list A
square(add1(A))

The functions add1 and square are recursive, and serve to simulate the
for loops in the imperative algorithm. In general, recursive functions give
us a (declarative) construct for simulating (imperative) looping constructs.

18

Looping constructs are instances of control constructs (or control struc-
tures) – programming constructs that affect the control flow (sequence of
command executions) of a program. Command sequencing through use
of control constructs is built into the imperative programming paradigm,
and more complex control constructs that manipulate command sequenc-
ing (e.g. continuations) are immediately available. Since control constructs
are at times quite convenient, we want to simulate them in the declarative
paradigm. In the remainder of this section, we define declarative constructs,
called monads, that provide for the simulation.

Definition 21. A monad4 is a triple 〈M, return,�=〉 where

• M is a function on data types,
• return is a function from data types to data types under M,
• �= is an operation on functions between data types and data types

under M.

Moreover, the following equations are satisfied for all f : A → MB and
g : B→ MC.:

1. (�= return) = idMA,
2. ((�= f) ◦ return) = f ,
3. ((�= g) ◦ (�= f)) = (�= ((�= g) ◦ f)).

Haskellers are more familiar with the following equivalent presentation of
the monad equations:

H1. (Ma �= return) = Ma,
H2. (return a �= f) = f a,
H3. ((Ma �= f) �= g) = (Ma �= λx.(f x �= g)).

Equations 1. and 2. are visualized as

A return //

return

��?
??

??
??

??
??

??
? MA

�=return

��
MA

A return //

f

��?
??

??
??

??
??

??
? MA

�= f

��
MB

4Or kleisli triple to mathematicians.

19

Equation 3. is visualized as

A return //

f

��?
??

??
??

??
??

??
?

(�=g)◦ f

��/
//

//
//

//
//

//
//

//
//

//
//

/ MA

�= f

��
MB

�=g

��

B

g

����
��

��
��

��
��

��

returnoo

MC

A return //

(�=g)◦ f

��/
//

//
//

//
//

//
//

//
//

//
//

/ MA

�= f

��
MB

�=g

��
MC

Now that we have our definition of monad, we can show how they are used
to simulate control constructs. In the next section we will show how to simu-
late complex control constructs such as continuations. At present, we begin
with a very simple example, simulating a for loop. Consider the following
imperative algorithm that takes a list and produces a list of doubles:

Imperative Algorithm
Given A, a list of length n
for i = 1 to n do

B[i]← (A[i], A[i])
end for

Thus, on input [1,2,3] the algorithm outputs the list of doubles [(1,1),(2,2),(3,3)].
Of course, we can simulate this program using a recursive function, but we
would like to use a monad. Fortunately, we know that lists are monadic.
We write [B], instead of the usual MB, to indicate that we are in the list
monad. Similarly, we write [b] instead of Mb. In the list monad, we have
return a = [a]. We need to parse the for loop and simulate each of its com-
ponents.

First, we need a function to do the work done inside the for loop. Once an
element has been taken from the list A it is assigned to the double (a, a).
Thus, let f ′ be a function that maps each a to its double (a, a).

Next, the double (a, a) is placed inside a list. We already have a function
that does this, namely return. Let f be the composition return ◦ f ′, that is f

20

maps a to [(a, a)]. Thus we now have the following:

Int return //

f

��?
??

??
??

??
??

??
[Int]

[(Int, Int)]

Since we are in the list monad, we are guaranteed the existance of a function
(�= f) such that (�= f) ◦ return = f . Since f a = [(a, a)], and return a =

[a], it must be the case that (�= f) [a] = [(a, a)].

Finally, we need to simulate the iteration of the for loop over the entire list
A, and (�= f) is just the function we need to do so. We need a way to
concatenate the lists [(a, a)] that are yielded by (�= f) for each a ∈ A.
Fortunately, the monad has already given us this by definition:

(�= f) [a1, . . . , an] =de f (�= f) [a1] + + · · · + + (�= f) [an]
= [(a1, a1), . . . , (an, an)].

That is, (�= f) just is the for loop, and so we have simulated the imperative
for loop with a monad. This kind of simulation holds in general for control
constructs, and other aspects of imperative programming:

• Exceptions: MA = (A + E) (E a set of exceptions).
• Side effects: MA = (A × S)S (S a set of states).
• Continuations: MA = R(RA) (R a set of results).

In the next section we will show in detail how to simulate continuations.
Before doing so, we present the mathematics of monads.

21

4.4 Monads Mathematically

5 Continuations and Control

5.1 Call-by-name and Call-by-value

We begin with a λ-theory (see Appendix A) restricted as follows:

• All variables and contants are terms,
• If f and a are terms, then f a is a term,
• If f is a term and x a variable, then λx f is a term.

All relevant equational rules and equivalences hold over this restricted set
of terms. We designate a subset of terms as values as follows:

• All variables and constants are values,
• All abstractions λx f are values.

Suppose we use our typing rules to contruct a term (λxM)N. We can define
different ways to reduce such a term to some other term. For example,
we might use beta reduction to substitute the term N for occurences of the
variable x in the term M. We might want to carry out this substitution only
under certain circumstances, or we might want to reduce the term N first,
or not at all. The different ways we might carry this process out are called
reduction strategies. Similarly, we might want to carry out this process only
if the terms invloved reduce to values. Reduction processes that have such
restrictions are called evaluation strategies. We will present two approaches
to reduction and evaluation called call-by-name (CBN) and call-by-value
(CBV).

For the remainder of this section, we let M and N be metavariables over
terms, and V be a metavariable over values. The one-step reduction rules for
reduction strategies for CBN and CBV are given in the top portion of Ta-
ble 1. Each reduction strategy induces a relation between terms. The CBN
reduction relation, denoted →n, is the smallest set of terms closed under
the CBN reduction strategy rules. Similarly, the CBV reduction relation,
denoted →v, is the smallest set of terms closed under the CBV reduction
strategy rules. Notice that →n is more inclusive with respect to beta re-

22

Reduction Strategies

Call-by-name Call-by-value

(λxM)N →n M[N/x] (λxM)V →v M[V/x]

M →n N
ML→n NL

M →v N
ML→v NL

M →v N
LM →v LN

Evaluation Strategies

Call-by-name Call-by-value

V 7→n V V 7→v V

M 7→n λxM′ M′[N/x] 7→n V
MN 7→n V

M 7→v λxM′ N 7→v V ′ M′[V ′/x] 7→n V
MN 7→n V

Table 1: CBN and CBV reduction and evaluation strategies

dexes, since the argument term in the reduction rule need not be a value.
Also note that→v is closed under the application of values to terms related
by→v. We denote the reflexive-transitive closure of→n by→∗n, and of→v

by→∗v.

The CBN and CBV evaluation strategies are given in lower portion of Ta-
ble 1. Each reduction strategy also induces a relation between terms. The
CBN evaluation relation, denoted 7→n, is the smallest set of terms closed
under the CBN evaluation strategy rules. Similarly, the CBV evaluation
relation, denoted 7→v, is the smallest set of terms closed under the CBV
evaluation strategy rules. It is somewhat instructive to compare→∗n and→∗v
to 7→∗n and 7→∗v, respectively. The comparison tells us the following:

Proposition 9. Given→v and→n, we have that 7→v⊆→
∗
v and 7→n⊆→

∗
n.

23

Hereafter, we will focus primarily on evaluation strategies. In Table 1, we
presented rule-based strategies that yielded our evaluation relations. There
is an equivalent presentation that uses “holes” in terms. A context is a term
that is missing a subterm. For example, λxx[] is a context. A context is filled
if a term is placed in the context’s hole, e.g. the context λxx[] can be filled
by the term (λxy) to yield the term λxx(λyx).

We want to conceptualize a step in computation using contexts. A program
is a term with no free variables. We need to parse a program into a context
E and a leftmost-outermost redex R, and fill E with the contractum of R.
Contexts E that provide for this are called evaluation contexts. We present
a grammar for evaluation contexts for both CBN and CBV evaluation:

• Ev ::= [] | Ev[(V [])] | Ev[([] M)]
• En ::= [] | En[([] M)]

with the evaluation relation defined as:

• Ev[(λxMV)] 7→v Ev[(M[V/x])]
• En[(λxMN)] 7→n En[(M[N/x])]

Given a program M, we can parse M into an evaluation context E and redex
(VN). Then M parsed as E[(VN)] means that (VN) is the current instruction,
and E is the rest of the program (e.g. the continuation). An operational
semantics of a λ-theory is defined as the reflexive-transitive closure of an
evaluation relation, and is denoted Eval. For example,

• Evalv(M) = V iff M 7→∗v V
• Evaln(M) = V iff M 7→∗n V .

We conclude this discussion with a demonstration of the operational equiv-
alence of CBN and CBV, using a (cps) transformation.

Definition 22. The Fischer CPS transform F is defined as follows:

• F(x) = λkkx
• F(λxM) = λkk(λa(λxF(M)a))
• F(MN) = λkF(M)(λmF(N)λn(mk)n)

where a, k,m, n are variables that do not occur in the argument of F.

Theorem 1. Let M ∈ Λ. Then Evalv(F(M)λxx) = Evaln(F(M)λxx)

24

V-P Γ, A,Γ′ B A P
Γ B A Γ B B

Γ B A ∧ B

N P Γ B > F
Γ B A ∧ B

Γ B A

A
Γ, A B B

Γ B A→ B
S

Γ B A ∧ B
Γ B B

A
Γ B A→ B Γ B A

Γ B B
P

Γ, B,C,Γ′ B A
Γ,C, B,Γ′ B A

C
Γ, B, B B A
Γ, B B A

W
Γ B A

Γ, B B A

Table 2: Positive Intuitionistic Propositional Logic

5.2 The Curry-Howard Isomorphism for CPL

We begin with positive intuitionistic propositional logic (PIPL), presented
in Table 2. The (well-formed) formulas of PIPL are generated in the usual
way (i.e. using set of atomic symbols and the set of connectives {∧,→}).
Each Γ in Table 2 is a list of formulas. We write a list of one element [A]
as just A, and denote list concatenation using commas. Equivalently, each
we could take each Γ to be a multiset, in which case P can be
omitted.

Consider the following two proofs:

(1) A, A→ B B A→ B A, A→ B B A
AA, A→ B B B

(2) A ∧ B B A ∧ B SA ∧ B B B

We have two different proofs (among many) of the formula B. Ultimately,
we will identify the formula B with the set of proofs of B. A convenient way

25

V-P Γ, x : A,Γ′ B x : A P
Γ B a : A Γ B b : B

Γ B (a, b) : A ∧ B

N P Γ B ∗ : 1 F
Γ B h : A ∧ B
Γ B π(h) : A

A
Γ, x : A B b : B

Γ B λxb : A→ B
S

Γ B h : A ∧ B
Γ B π′(h) : B

A
Γ B f : A→ B Γ B a : A

Γ B f (a) : B
P

Γ, x : B, y : C,Γ′ B a : A
Γ, y : C, x : B,Γ′ B a : A

C
Γ, x : B, x : B B a : A

Γ, x : B B a : A
W

Γ B a : A
Γ, x : B B a : A

Table 3: Anonymous Typing rules

of keeping track of the steps of the proofs is to adorn each formula with a
term, and have each rule in Table 2 act as an operation on the terms. For
example, we adorn A → B with a term f and A with a term a. We indicate
the adornment as f : A → B and a : A. We modify A to act on
terms as follows:

Γ B f : A→ B Γ B a : A
Γ B f a : B

.

Our proof (1) now looks like:

a : A, f : A→ B B f : A→ B a : A, f : A→ B B a : A
Aa : A, f : A→ B B f a : B

The term f a is identified with the proof (1) of the formula B.

We specify a language of terms with the following grammar:

T ::= ∗ | x | λxT | TT | (T ,T) | π(T) | π′(T)

where x is a (meta-)variable.

26

Each formula A has infinitely many variables x such that x : A. Given this
assumption, we adorn types with terms according to Table 3.

Thus our proof of (2) now looks like:

(2) (a, b) : A ∧ B B (a, b) : A ∧ B
S(a, b) : A ∧ B B π′(a, b) : B

and so the term π′(a, b) is identified with the proof (2) of the formula B. Of
course, the term language we have described just is that of the (pure) typed
λ-calculus (see Appendix A). The identification of formulas of PIPL with
types of TLC, and of intuitionistic proofs with terms of TLC, is called the
Curry-Howard Isomorphism.

We wish to extend the Curry-Howard Isomorphism to classical proposi-
tional logic (CPL). Thus, we need to introduce negation into our proof sys-
tem. We introduce negation by designating a single result formula (later
result type). We denote the result formula by R. We now write ¬A for
formulas A→ R. A allows us to introduce negations into proofs:

Γ, x : A B r : R
Γ B λxr : ¬A

The addition of negation gives us full intuitionistic propositional logic (IPL).
To achieve CPL, we need to include double negation elimination. That is,
we need the rule

Γ B ¬¬A
Γ B A

.

Moreover, we need a term operation corresponding to this rule. We intro-
duce a control operator C to our langauge of terms. Thus our term language
is now:

T ::= ∗ | x | λxT | CT | TT | (T ,T) | π(T) | π′(T)

and we have the following rule:

(C)
Γ B a : ¬¬A
Γ B Ca : A

27

Since we have added another syntactic combination rule, we need to intro-
duce an evaluation strategy for reducing terms of the form Ca. To do so
properly, we need another operatorA. Thus our term language is now:

T ::= ∗ | x | λxT | CT | AT | TT | (T ,T) | π(T) | π′(T)

We postpone discussion of evaluation strategies and simply present the cor-
responding rule:

(A)
Γ B r : R

Γ BAr : R

Using A and C, we have a proof system for CPL wherein formulas are
identified with types and proofs are identified with terms. That is, we have
extended the Curry-Howard Isomorphism to CPL. The term language is a
TLC with control operators.

5.3 The Continuation Monad and CPS Transformations

28

A The λ-Calculus

Much of the following material is drawn from Gunter (1992). Let Σ1 be a
collection of type constants, or basic types. We form the types over Σ1 with
the context-free grammar:

S ::= 1 | A | S → S | S × S

where A ∈ Σ1, and 1 is the null product type. That is, the types over Σ1 are
the trees generated by this grammar.

Let Σ0 be a function from term constants to types over Σ1. The pair Σ =

(Σ0,Σ1) is called a signature. We form the terms over Σ0 with the context-
free grammar:

T ::= ∗ | a | x | λxT | TT | (T ,T) | π(T) | π′(T)

where x is a variable and (a, A) ∈ Σ0. The ∗ is a special constant of type
1. The terms over Σ0 are the trees generated by this grammar, called term
trees. Equivalence classes of term trees modulo ≡α are called λ-terms, or
simply terms. Free variables and substitution are defined in the usual way.

Herein we use Latin minuscules as metavariables ranging over λ-terms. Let
Σ = (Σ0,Σ1) be a signature. A type assignment is a (possibly empty) list Γ

of pairs x : A, where x is a variable and A a type, such that the variables in
Γ are distinct.

A typing judgment is a triple consisting of a type assignment Γ, a term a,
and a type A such that all of the free variables of a occur in Γ. LetA be the
collection of all type assignments, and let Λ0 be the collection of all λ-terms
and Λ1 be the collection of all types. Let

J = {(Γ, a, A) ∈ A × Λ0 × Λ1 | all the free variables in a occur in Γ}.

That is, J is the collection of all typing judgments. We define B : ⊆ J to
be the least relation closed under the axioms and rules in Table 4. We write
Γ B a : A to indicate that (Γ, a, A) ∈ B :. If Γ is empty, we write Ba : A. The
typing judgments that appear above the line in each rule are called premises,
and those below the line are called conclusions.

A typing derivation is a labelled tree where the labels are typing judgements,
the leaves are axioms and each non-leaf is labelled by the conclusion of a

29

V-P Γ, x : A,Γ′ B x : A P
Γ B a : A Γ B b : B

Γ B (a, b) : A × B

C Γ B c : Σ0(c) F
Γ B h : A × B
Γ B π(h) : A

N P Γ B ∗ : 1 S
Γ B h : A × B
Γ B π′(h) : B

A
Γ, x : A B b : B

Γ B λxb : A→ B
P

Γ, x : B, y : C,Γ′ B a : A
Γ, y : C, x : B,Γ′ B a : A

A
Γ B f : A→ B Γ B a : A

Γ B f (a) : B
W

Γ B a : A (x < Γ)
Γ, x : B B a : A

Table 4: Typing rules

rule whose premises are the labels of that non-leaf’s daughters. A term a
is of type A iff Γ B a : A is the conclusion of some typing derivation. If
Γ B a : A and Γ B a : A′, then A = A′.

An equation is a four-tuple (Γ, a, b, A) where Γ is a type assignment, ΓBa : A
and Γ B b : A. We typically write equations as (Γ B a = b : A). Let T be a
set of equations. We write T ` (Γ B a = b : A) if (Γ B a = b : A) ∈ T . The
statement T ` (Γ B a = b : A) is called an equational judgment. We write
` (Γ B a = b : A) to indicate that (Γ B a = b : A). is to be included in every
theory.

An equational theory is a set of equations closed under the axioms and rules
in Table 5. The equational judgments that appear above the line in each rule
are called premises, and those below the line are called conclusions. An
equational derivation is defined exactly as a typing derivation, with equa-
tional judgements in place of typing judgements.

Definition 23. An equational theory that satisfies the rules in Table 6 is
called a λ-theory.

30

A
T ` (Γ B a = b : A) (x : B < Γ)

T ` (Γ, x : B B a = b : A)

D
T ` (Γ, x : B B a = b : A) (x < Fv(a) ∪ Fv(b))

T ` (Γ B a = b : A)

P
T ` (Γ, x : B, y : C,Γ′ B a = b : A)
T ` (Γ, y : C, x : B,Γ′ B a = b : A)

R ` (Γ B a = a : A)

S
T ` (Γ B a = b : A)
T ` (Γ B b = a : A)

T
T ` (Γ B a = b : A) T ` (Γ B b = c : A)

T ` (Γ B a = c : A)

µ
T ` (Γ B a = b : A→ B) T ` (Γ B c = d : A)

T ` (Γ B a(c) = b(d) : B)

ξ
T ` (Γ, x : A B a = b : B)

T ` (Γ B λxa = λxb : A→ B)

Table 5: Equational Rules

N P ` (Γ B a = ∗ : 1)

β ` (Γ B (λxb)(a) = [a/x]b : B)

η ` (Γ B λx f (x) = f : A→ B) (x < Fv(f))

F- ` (Γ B π(a, b) = a : A)

S- ` (Γ B π′(a, b) = b : B)

P- ` (Γ B (π(a, b), π′(a, b)) = (a, b) : A × B)

Table 6: λ-rules

31

B Category Theory

Definition 24 (Category Axioms). A category C consists of the following:

1. A collection of objects, denoted by Ob(C);
2. A collection of arrows, denoted by Ar(C);
3. Operations dom and cod from the collection of arrows to the collec-

tion of objects:

dom : Ar(C)→ Ob(C) and cod : Ar(C)→ Ob(C).

For any arrow f ∈ Ar(C), dom f is called the domain of f , and cod f
is called the codomain of f . If dom f = a and cod f = b, we represent
this as

f : a→ b or a
f
→ b;

4. An operation ◦ that assigns to each pair 〈g, f 〉 of arrows f , g ∈ Ar(C)
that satisfies cod f = dom g, an arrow g ◦ f , called the composite of f
and g, such that

dom g ◦ f = dom f , and cod g ◦ f = cod g;

5. For all objects b ∈ Ob(C), there is an arrow idb : b → b in Ar(C),
called the identity arrow on b, such that the following identity holds
for all arrows f : a→ b and g : b→ c in Ar(C):

idb ◦ f = f and g ◦ idb = g;

6. For all arrows f : a → b, g : b → c, and h : c → d in Ar(C) the
following identity holds:

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Note that Ob(C) and Ar(C) are not necessarily sets. In our preliminary
examples, however, they will be sets in order to facilitate understanding.

We will use directed graphs to represent arrow compositions just as we A
diagram over C is a directed graph with edges labelled by arrows of C, and
nodes by objects of C. We say that a diagram commutes if for every pair of

32

vertices A and B, and paths f1, . . . , fn and g1, . . . , gm between A and B, we
have that fn ◦ · · · ◦ f1 = gm ◦ · · · ◦ g1.

To illustrate, we restate the categorical properties for identity arrows (Defi-
nition 24 (5)) and associativity of composition (Definition 24 (6)).

Property 1 (Identity Law for Arrow Composition). Let C be a category,
and let b ∈ Ob(C) with identity arrow idb. For all arrows f : a → b and
g : b→ c in Ar(C), the following diagram commutes.

b
g

��?
??

??
??

??
??

idb

��
a

f

??����������� f // b
g // c

Property 2 (Associative Law of Arrow Composition). Let C be a category.
For all arrows f : a → b, g : b → c, and h : c → d in Ar(C), the following
diagram commutes.

a
f //

h◦(g◦ f)=(h◦g)◦ f

��

g◦ f

��?
??

??
??

??
??

??
??

??
? b

g

��

h◦g

����
��

��
��

��
��

��
��

�

d choo

We can encompass all set theoretic properties of functions within category
theory. We define the category Set as follows:

• The objects are sets.
• The arrows are functions.
• The composition operator is function composition.
• The identity arrow idA is the identity function idA on A.

It is easy to check that Set satisfies Definition 24, due to the Identity and
Associative Laws for Functional Composition.

33

References
Amadio, R. M., & Curien, P. L. (1998). Domains and Lambda-Calculi.

Cambridge University Press.

Gunter, C. (1992). Semantics of Programming Languages. The MIT Press.

34

