
On the Computational Interpretation
of Negation

Michel Parigot

Equipe de Logique Mathématique
case 7012, Université Paris 7

2 place Jussieu, 75251 Paris cedex 05, France

Abstract. We investigate the possibility of giving a computational in-
terpretation of an involutive negation in classical natural deduction. We
first show why this cannot be simply achieved by adding ¬¬A = A to
typed λ-calculus: the main obstacle is that an involutive negation can-
not be a particular case of implication at the computational level. It
means that one has to go out typed λ-calculus in order to have a safe
computational interpretation of an involutive negation.
We then show how to equip λµ-calculus in a natural way with an involu-
tive negation: the abstraction and application associated to negation are
simply the operators µ and [] from λµ-calculus. The resulting system is
called symmetric λµ-calculus.
Finally we give a translation of symmetric λ-calculus in symmetric λµ-
calculus, which doesn’t make use of the rule of µ-reduction of λµ-calculus
(which is precisely the rule which makes the difference between classical
and intuitionistic proofs in the context of λµ-calculus). This seems to
indicate that an involutive negation generates an original way of com-
puting. Because symmetric λµ-calculus contains both ways, it should be
a good framework for further investigations.

1 Introduction

A lot of efforts have been done in the past 10 years to give computational inter-
pretations of classical logic, starting from the work of Felleisen [5,6], Griffin [9]
and Murthy [15]. It has been shown that classical natural deduction allows to
modelize imperative features added to functional languages like Scheme, Com-
mon Lisp or ML. Two particular systems, λC-calculus ([5], [6]) and λµ-calculus
([17]), have been intensively studied and the relation between features of lan-
guages, rules of natural deduction, machines and semantics seems to be well
understood.

In the context of sequent calculus, several other computational interpreta-
tions of classical logic have been constructed following the spirit of Girard’s linear
logic [7]. It is often claimed in this context that computational interpretations
of negation in classical logic should be involutive, that is ¬¬A = A should be

P. Clote and H. Schwichtenberg (Eds.): CSL 2000, LNCS 1862, pp. 472–484, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

On the Computational Interpretation of Negation 473

realised at the computational level. It is even sometimes claimed that this is the
distinguishing feature of classical logic. But the real computational effect of the
involutive character is not clear.

Systems coming from a natural deduction setting, like λC-calculus or λµ-
calculus, don’t have an involutive negation. There is only one exception: the
symmetric λ-calculus of Barbanera and Berardi [2,3], which is explicitely based
on an involutive negation, but whose concrete programming counterpart is not
so well understood.

This paper is devoted to the study of the possibility of having an involu-
tive negation in a computational interpretation of the usual natural deduction
system.

In section 2 we discuss in details the possiblity of adding ¬¬A = A to typed
λ-calculus (as a way of adding the classical absurdity rule to intuitionistic natural
deduction). We show that there are two obstacles: negation cannot be a partic-
ular case of implication and ⊥ cannot be an atomic type, contrary to the use
coming from intuitionistic logic. The fact that negation and implication need to
have different computational interpretations means that one has to go out typed
λ-calculus in order to have a safe computational interpretation of an involutive
negation.

In section 3 we show how to equip λµ-calculus in a natural way with an
involutive negation: the abstraction and application associated to negation are
simply the operators µ and [] from λµ-calculus. The resulting system is called
symmetric λµ-calculus.

In section 4 we give a translation of symmetric λ-calculus in symmetric λµ-
calculus, which doesn’t make use of the rule of µ-reduction of λµ-calculus (which
is precisely the rule which makes the difference between classical and intuitionis-
tic proofs in the context of λµ-calculus). This seems to indicate that an involutive
negation generates an original way of computing. Because symmetric λµ-calculus
contains both ways, it should be a good framework for further investigations.

In the sequel types are designated by letters A,B,C etc., while atomic types
are designated by P,Q,R, etc. Terms of λ-calculus are constructed upon variables
x, y, z using two rules:

(abstraction) if x is a variable and u a term, then λx.u is a term.
(application) if u and v are terms, then (u)v is a term.

Reduction of λ-calculus is denoted by � .

2 About Typed λ-Calculus and ¬¬A = A

Let us consider usual typed λ-calculus whose types are constructed from atomic
types using →, ¬ and ⊥ (⊥ is considered as an atomic type). We denote this
system by S→,¬,⊥. Judgements are expressions of the form Γ � u : A, where A is
a type, u is a term of λ-calculus and Γ is a context of the form x1 : A1, ..., xn : An.

The rules of derivation of S→,¬,⊥ are the following:

474 M. Parigot

x : A � x : A

Γ, x : A � u : B

Γ � λx.u : A → B

Γ1 � u : A → B Γ2 � v : A

Γ1, Γ2 � (u)v : B

Γ, x : A � u : ⊥
Γ � λx.u : ¬A

Γ1 � u : ¬A Γ2 � v : A

Γ1, Γ2 � (u)v : ⊥

We adopt in these rules an implicit management of contraction and weakening.
Contraction is obtained through the fact that contexts are considered as sets: in
a conclusion of a rule a context Γ1, Γ2 denotes the union of the contexts Γ1 and
Γ2. Weakening is obtained by the convention that in a premise of an introduction
rules, Γ, x : A denotes a context where x : A doesn’t necessary appear.
Note that in S→,¬,⊥, ¬A is identified with A →⊥. Indeed ¬ is often considered
as a derived connective whose definition is precisely ¬A = A →⊥.
Suppose now that we add the rule ¬¬A ⊆ A, i.e.

Γ � u : ¬¬A

Γ � u : A

which is equivalent (up to η-equivalence) to the trivial interpretation of the
absurdity rule

Γ, x : ¬A � u : ⊥
Γ � λx.u : A

We call the resulting system S∗
→,¬,⊥. In this system one can prove

x : A � λk.(k)x : A as follows

k : ¬A � k : ¬A x : A � x : A

k : ¬A, x : A � (k)x : ⊥
x : A � λk.(k)x : A

The term λk.(k)x will play a fundamental role in the examples of sections 2.1
and 2.2.
We show in the next sections that the system S∗

→,¬,⊥ doesn’t satisfy normal-
isation and correctness properties. This means that the addition of the rule
¬¬A ⊆ A (and a fortiori the addition of ¬¬A = A) to S→,¬,⊥ destroys normal-
isation and correctness properties.

2.1 Normalisation

Proposition 1. Let θ = λf.λx.(λk.(k)f)(f)x. The term ((θ)θ)θ is typable in
S∗

→,¬,⊥ and not normalisable.

Proof. Let C be a type. One defines Cn by induction on n by: C1 = C and
Cn+1 = Cn → Cn.
One proves that � θ : Cn+2, for each n ≥ 1. We have

f : Cn+1, x : Cn � (f)x : Cn

On the Computational Interpretation of Negation 475

Because f : Cn+1 � λk.(k)f : Cn+1, we have also

f : Cn+1, x : Cn � (λk.(k)f)(f)x : Cn

and thus � λf.λx.(λk.(k)f)(f)x : Cn+2, i.e � θ : Cn+2.
It follows that � ((θ)θ)θ : Cn+2, for each n ≥ 1: it suffices to type the first
occurence of θ with Cn+4, the second with Cn+3 and the third with Cn+2.
Now it is easy to check that ((θ)θ)θ is not normalisable because
θ = λf.λx.(λk.(k)f)(f)x and θ reduces in one step to θ1 = λf.λx.((f)x)f and
((θ1)θ1)θ1 has only one reduction sequence and reduces to itself in two steps as
follows:

((θ1)θ1)θ1 = ((λf.λx.((f)x)f)θ1)θ1

� (λx.((θ1)x)θ1)θ1

� ((θ1)θ1)θ1

2.2 Correctness

In S∗
→,¬,⊥ types are not preserved by reduction in an essential way, which forbids

the derivation of correct programs from proofs. This loss of correctness can be
easily shown if one extends typed λ-calculus to a second order typed λ-calculus.
Let us take for example the simplest such system, due to Leivant [14] and widely
developed in [12,13], which allows to derive correct programs from equational
specifications of functions. In such a system one can easely prove that λx.λy.(x)y
is a program which computes the exponential yx. More precisely one has a term
e, βη-equivalent to λx.λy.(x)y such that:

� e : ∀u∀v(Nu → (Nv → Nvu))
where Nx is the second order type ∀X(∀y(Xy → Xsy) → (X0 → Xx)) saying
that x is a natural number.
If one adds ¬¬A ⊆ A, one can prove that λx.λy.(y)x is a also a program which
computes the exponential yx. In other words, the calculus mixed up xy and yx!
This forbids obviously any hope to derive correct programs in this calculus.

Proof. Suppose � e : ∀u∀v(Nu → (Nv → Nvu)) . Then
x : Nu � (e)x : Nv → Nvu and y : ¬(Nv → Nvu), x : Nu � (y)(e)x : ⊥ . It
follows x : Nu � λy.(y)(e)x : ¬¬(Nv → Nvu) and because ¬¬A ⊆ A,
x : Nu � λy.(y)(e)x : Nv → Nvu.
Therefore � λx.λy.(y)(e)x : Nu → Nv → Nvu and
� λx.λy.(y)(e)x : ∀u∀v(Nu → (Nv → Nvu)).
This means that λx.λy.(y)(e)x is also a program for yx. But λx.λy.(y)(e)x is
βη-equivalent to λx.λy.(y)x:

λx.λy.(y)(e)x ≡βη λx.λy.(y)(λx.λy.(x)y)x
≡βη λx.λy.(y)λy.(x)y
≡βη λx.λy.(y)x

476 M. Parigot

2.3 Discussion

The problem behind the examples of sections 2.1 and 2.2 appears clearly in the
following derivation:

k : ¬(A → B) � k : ¬(A → B) f : A → B � f : A → B

k : ¬(A → B), f : A → B � (k)f : ⊥
f : A → B � λk.(k)f : ¬¬(A → B)

f : A → B � λk.(k)f : A → B x : A � x : A

f : A → B, x : A � (λk.(k)f)x : B

This derivation shows that in S∗
→,¬,⊥, the term (λk.(k)f)x is typable of type B

in the context f : A → B, x : A. But (λk.(k)f)x reduces to the term (x)f , which
is not typable in the context f : A → B, x : A. Therefore typing in S∗

→,¬,⊥ is
not preserved under reduction.
This derivation also shows that the addition of the trivial absurdity rule to typed
λ-calculus produces the effect of adding the following rule:

Γ1 � u : A → B Γ2 � v : A

Γ1, Γ2 � (v)u : B

to the usual rule of elimination of implication:

Γ1 � u : A → B Γ2 � v : A

Γ1, Γ2 � (u)v : B

The effect of choosing an involutive negation is indeed to induce a symetry at the
level of application. As the application associated to → cannot be symmetric,
the only possibility to get a safe calculus with an involutive negation is to keep
separated the computational interpretations of ¬ and →. The obvious way of
doing is to choose two different abstractions and two different applications.
As shown below there is one more obstacle to an involutive negation in the
context of typed λ-calculus.

2.4 The Role of ⊥
Suppose now that we restrict our system by forgetting →. The resulting system
S∗

¬,⊥ has the following rules:
x : A � x : A

Γ x : A � u : ⊥
Γ � λx.u : ¬A

Γ1 � u : ¬A Γ2 � v : A

Γ1, Γ2 � (u)v : ⊥

and in addition the trivial absurdity rule:
Γ, x : ¬A � u : ⊥

Γ � λx.u : A

We show that normalisation fails for S∗
¬,⊥.

On the Computational Interpretation of Negation 477

Proposition 2. Let ξ = λx.λf.(λk.(k)f)(f)x and y a variable.
The term (λk.(k)ξ)(ξ)y is typable in S∗

¬,⊥ and not normalisable.

Proof. We first show that (λk.(k)ξ)(ξ)y is typable in S∗
¬,⊥.

We have x : ⊥, f : ¬⊥ � (f)x : ⊥ and f : ¬⊥ � λk.(k)f : ¬⊥. Therefore
x : ⊥ , f : ¬⊥ � (λk.(k)f)(f)x : ⊥ and x : ⊥ � λf.(λk.(k)f)(f)x : ¬¬⊥.
Because ¬¬⊥ ⊆ ⊥, we also � λx.λf.(λk.(k)f)(f)x : ¬⊥ i.e. � ξ : ¬⊥. It follows
� λk.(k)ξ : ¬⊥ and y : ⊥ � (λk.(k)ξ)(ξ)y : ⊥ .
Let ξ′ = λx.λf.((f)x)f . The term (λk.(k)ξ)(ξ)y reduces to the term ((ξ′)y)ξ′

which has only one reduction sequence and reduces in two steps to itself as
follows:

((ξ′)y)ξ′ = ((λx.λf.((f)x)f)y)ξ′

� (λf.((f)y)f)ξ′

� ((ξ′)y)ξ′

In order to type a non normalisable term in the system S∗
¬,⊥ we have made an

essential use of the fact that ⊥ is an atomic type of the system, which can be
used to built other type (we used the type ¬⊥). The problem lies in the confusion
between two uses of ⊥: as indicating a contradiction in a proof and as an atomic
type. Therefore in order to get normalising calculus with an involutive negation
we have to forbid ⊥ as an atomic type (it can be a “special” type, which is
outside the system).
Note that the two obstacles to an involutive computational interpretation of
negation are completely different. In particular, the examples of sections 2.1 and
2.2 do not use the fact that ⊥ is an atomic type of the system: they hold for the
system S∗

→,¬, where ⊥ is used only for indicating a contradiction in a proof.

3 Typed λµ-Calculus with ¬¬A = A

In this section, we extend typed λµ-calculus in a natural way with an involutive
negation: the abstraction and application associated to negation are simply the
operator µ and [] from λµ-calculus.

3.1 λµ-Calculus

Typed λµ-calculus is a simple computational interpretation of classical logic
introduced in [17]. It has both a clear interpretation in terms of environment
machines and a clear semantics in terms of continuations [10,11,20].
The λµ-calculus has two kinds of variables: the λ-variables x, y, z, ..., and the
µ-variables α, β, γ, ... Terms are defined inductively as follows:

- x is a term, for x a λ-variable;
- λx.u is a term, for x a λ-variable and u a term;
- (t)u is a term, for t and u terms;
- µα.[β]t is a term, for t a term and α, β µ-variables.

Expressions of the form [β]t, where β is µ-variables and t a term, are called
named terms. They correspond to type ⊥ in typed λµ-calculus.

478 M. Parigot

Typed λµ-calculus is a calculus for classical logic, enjoying confluence and strong
normalisation [17,18], which doesn’t make use of negation. Types are build from
atomic types using → only. Type ⊥ is not needed, but is added for convenience
as a special type denoting a contradiction in a proof (in the context of typed
λµ-calculus one could also consider it as an atomic type). Judgments have two
contexts: one to the left for λ-variables and one to the right for µ-variables. In
order to make the symmetric extension easier to understand, we adopt here a
presentation where the right context is replaced by a negated left context. Of
course, this doesn’t change the calculus; in particular negation is not needed
inside types.
Judgments are expressions of the form Γ ; ∆ � u : A, where A is a type, u is
a term of λµ-calculus, Γ is a context of the form x1 : A1, ..., xn : An and ∆ a
context of the form α1 : ¬A1, ..., αn : ¬An.
The typing rules of λµ-calculus are the following:

x : A � x : A

Γ, x : A; ∆ � u : B

Γ ; ∆ � λx.u : A → B

Γ1; ∆1 � u : A → B Γ2; ∆2 � v : A

Γ1, Γ2; ∆1, ∆2 � (u)v : B

Γ ; ∆, α : ¬A � u : ⊥
Γ ; ∆ � µα.u : A

Γ ; ∆ � u : A

Γ ; ∆, α : ¬A � [α]u : ⊥
As for typed λ-calculus we adopt in these rules an implicit management of con-
traction and weakening, with the same conventions as in section 2.
The λµ-calculus has two fundamental reduction rules:

(R1) (λx.u)v � u[v/x]

(R2) (µα.u)v � µα′.u[[α′](w)v/[α]w]

and in addition simplification rules (like η-rule of λ-calculus):

(S1) λx.(u)x � u

(S2) µα.[α]u � u

Simplification rules are subject to the following restrictions: in (S1), x has no
free occurences in u; in (S2), α has no free occurences in u.
In (R2), the term u[[α′](w)v/[α]w] is defined as the result of substituting to each
subterm of u of the form [α]w, the new subterm [α′](w)v. Note that if α has
type ¬(A → B), then α′ has type ¬B.

3.2 Symmetric λµ-Calculus

We introduce an extension of λµ-calculus with an involutive negation, called
symmetric λµ-calculus. We simply take the abstraction µ and the application []
of λµ-calculus as beeing the new abstraction and application corresponding to
the computational content of this involutive negation.

On the Computational Interpretation of Negation 479

Types of symmetric λµ-calculus are defined as follows:

A := P | ¬P | A → B | ¬(A → B)

where P denotes atomic types.
The negation ¬ is extended to an involutive negation on types in the obvious
way.
For convenience, one adds a special type ⊥ . For the reason explained in section
2.4 , ⊥ doesn’t belong to the set of atomic types.
Note that an involutive negation, invites to confuse the rule of introduction of
negation

Γ, x : A � u : ⊥
Γ � µx.u : ¬A

and the absurdity rule
Γ, x : ¬A � u : ⊥

Γ � µx.u : A

and also to have only one kind of variable.
This is this drastic solution that we adopt with symmetric λµ-calculus, because it
should better capture the essence of an involutive negation, but more permissive
ones might also be interesting at the computational level.

Terms of Symmetric λµ-Calculus.

Symmetric λµ-calculus has only one kind of variables. Terms are defined induc-
tively as follows:

- x is a term, for x a λ-variable;
- λx.u is a term, for x a variable and u a term;
- (t)u is a term, for t and u terms;
- µx.[u]v is a term, for x a variable and u, v terms.

Expressions of the form [u]v, where u, v are terms, are called named terms. They
correspond to type ⊥ in typed symmetric λµ-calculus.

Typing Rules of Symmetric λµ-Calculus.

x : A � x : A

Γ, x : A � u : B

Γ � λx.u : A → B

Γ1 � u : A → B Γ2 � v : A

Γ1, Γ2 � (u)v : B

Γ, x : A � u : ⊥
Γ � µx.u : ¬A

Γ1 � u : ¬A Γ2 � v : A

Γ1, Γ2 � [u]v : ⊥
As for typed λ-calculus one adopts in these rules an implicit management of
contraction and weakening, with the same conventions as in section 2.

480 M. Parigot

Reduction Rules of Symmetric λµ-calculus.

The symmetric λµ-calculus has the following reduction rules:

(R1) (λx.u)v � u[v/x]

(R2) (µx.u)v � µx′.u[µz.[x′](z)v/x]

(R3) [µx.u]v � u[v/x]

(R4) [u]µx.v � v[u/x]

and in addition simplification rules (like η-rule of λ-calculus):

(S1) λx.(u)x � u

(S2) µx.[x]u � u

(S3) µx.[u]x � u

Simplification rules are subject to the following restriction: in (S1), (S2), (S3), x
has no free occurences in u.
Symmetric λµ-calculus is clearly an extension of λµ-calculus. Rule (R1) is the
usual β-reduction of λ-calculus. Because we make a more liberal use of variables
in symmetric λµ-calculus, the rule (R2) of µ-reduction is stated in a more gen-
eral setting than the corresponding rule of λµ-calculus, but his effect is exactly
the same when restricted to terms of λµ-calculus.
In λµ-calculus the substituted variable x (which is a µ-variable) always occurs
in a subterm [x]w and the result of the substitution is in this case [µz.[x′](z)v]w
which reduces to [x′](w)v. This corresponds exactly to the substitution of the
rule (R2) of λµ-calculus.
The reduction rule (R2) of symmetric λµ-calculus is simpler to understand with
typed terms. Suppose that one reduces the term (µx¬(A→B).u ⊥)vA. One re-
places in u the occurences of x¬(A→B) by a canonical term of type ¬(A → B)
which is µzA→B .[x′¬B](zA→B)vA. This term can be thought as a pair 〈vA, x′¬B〉.
The two new rules are the rules (R3) and (R4), which correspond respectively to
a kind β-reduction for µ and its symmetric, are exactly those of the symmetric
λ-calculus of Barbanera and Berardi [2].
Note that the rule (R2) introduces a “communication” between → and ¬, which
has no real equivalent in the symmetric λ-calculus.
Because of its symmetric nature (appearing in rules (R3) and (R4)), symmetric
λµ-calculus is essentially not confluent. As in symmetric λ-calculus, this non
confluence could be used in positive way to derive symmetric programs.
Indeed symmetric λµ-calculus contains two different ways of computing with
classical proofs: the one of λµ-calculus, based on the specific rule (R2) of µ-
reduction, which is well understood in terms of machines and continuations; the
one of symmetric λ-calculus, based on rules (R3) and (R4), which is of a different
computational nature. The embedding of λµ-calculus in symmetric λµ-calculus
is obvious and doesn’t make use of (R3) and (R4). In the next section we develop

On the Computational Interpretation of Negation 481

an embedding of symmetric λ-calculus in symmetric λµ-calculus, which doesn’t
make use of (R2).

4 Interpretation of Symmetric λ-Calculus
in Symmetric λµ-Calculus

In this section, we give a translation of symmetric λ-calculus in symmetric λµ-
calculus, which doesn’t make use of rule (R2): reduction involves only the rules
(R1), (R3) and (R4).

4.1 The Symmetric λ-Calculus of Barbanera and Berardi

The types of the system are defined by:

A := P |¬P |A ∧ B|A ∨ B

where P denotes atomic types.
An involutive negation on types is defined as follows:

¬(A) = ¬A
¬(¬A) = A
¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B

There is also a special type ⊥ , which doesn’t belong to the set of atomic types.

Derivation Rules of Symmetric λ-Calculus

x : A � x : A

Γ � u : A ∆ � v : B

Γ,∆ � 〈u, v〉 : A ∧ B
∧−intro

Γ � ui : Ai

Γ � σi(ui) : A1 ∨ A2
∨−intro (i=1,2)

Γ, x : A � u : ⊥
Γ � λx.u : ¬A

¬−intro
Γ � u : ¬A ∆ � v : A

Γ,∆ � u ∗ v : ⊥ ¬−elim

As for typed λ-calculus one adopts in these rules an implicit management of
contraction and weakening, with the same conventions as in section 2.

Reduction Rules of Symmetric λ-Calculus

(β) λx.u ∗ v � u[v/x]

(β⊥) u ∗ λx.v � v[u/x]

(π) 〈u1, u2〉 ∗ σi(vi) � ui ∗ vi

(π⊥) σi(vi) ∗ 〈u1, u2〉 � vi ∗ ui

482 M. Parigot

Symmetric λ-calculus is obviously not confluent but enjoys strong normalisa-
tion [2,3]. Moreover its non-confluence can be used in a positive way to derive
symmetric programs [4].

4.2 Interpretation of the Symmetric λ-Calculus
in the Symmetric λµ-Calculus

Connectives ∧ and ∨ are translated as follows:
A ∨ B = ¬A → B
A ∧ B = ¬(A → ¬B)

The rules ∧-intro, ∨-intro, ¬-intro and ¬-elim are translated as follows:
∧-intro

z : A → ¬B � z : A → ¬B Γ1 � u : A

Γ1, z : A → ¬B � (z)u : ¬B Γ2 � v : B

Γ1, Γ2, z : A → ¬B � [(z)u]v :⊥
Γ1, Γ2 � µz.[(z)u]v : ¬(A → ¬B)

∨-intro1
z : ¬A � z : ¬A Γ � u : A

Γ, z : ¬A � [z]u : ⊥
Γ, z : ¬A � µd.[z]u : B

Γ � λz.µd.[z]u : ¬A → B

∨-intro2
z : ¬B � z : ¬B Γ � u : B

Γ, z : ¬B � [z]u : ⊥
Γ � µz.[z]u : B

Γ � λd.µz.[z]u : ¬A → B

¬-intro
Γ, x : A � u : ⊥
Γ � µx.u : ¬A

¬-elim
Γ1 � u : ¬A Γ2 � v : A

Γ1, Γ2 � [u]v : ⊥

Let T be the translation defined inductively as follows:
T (x) = x
T (〈u, v〉) = µz[(z)T (u)]T (v)
T (σ1(u) = λz.µd.[z]T (u)
T (σ2(u) = λd.µz.[z]T (u)
T (λx.u) = µx.T (u)
T (u ∗ v) = [T (u)]T (v)

On the Computational Interpretation of Negation 483

As shown before, T preserves types and it is easy to check that T is compatible
with substitution, i.e. T (u[v/x]) = T (u)[T (v)/x]. We prove now that T preserves
reduction, in a way which doesn’t make use of rule (R2).

T ({λx.u} ∗ v) = [µx.T (u)]T (v)
� T (u)[T (v)/x]
= T (u[v/x])

T (〈u1, u2〉 ∗ σ1(v)) = [µz.[(z)T (u1)]T (u2)]λz.µd.[z]T (v)
� [(λz.µd.[z]T (v))T (u1)]T (u2)
� [µd.[T (u1)]T (v)]T (u2)
� [T (u1)]T (v)
= T (u1 ∗ v)

T (〈u1, u2〉 ∗ σ2(v)) = [µz.[(z)T (u1)]T (u2)]λd.µz.[z]T (v)
� [(λd.µz.[z]T (v))T (u1)]T (u2)
� [µz.[z]T (v)]T (u2)
� [T (u2)]T (v)
= T (u2 ∗ v)

The symmetric rules are preserved in the same way.

References

1. H. Barendregt : The Lambda-Calculus. North-Holland, 1981.
2. F. Barbanera, S. Berardi : A symmetric lambda-calculus for classical program

extraction. Proceedings TACS’94, Springer LNCS 789 (1994).
3. F. Barbanera, S. Berardi : A symmetric lambda-calculus for classical program

extraction. Information and Computation 125 (1996) 103-117.
4. F. Barbanera, S. Berardi, M. Schivalocchi : “Classical” programming-with-proofs

in lambda-sym: an analysis of a non-confluence. Proc. TACS’97.
5. M. Felleisen, D.P. Friedman, E. Kohlbecker, B. Duba : A syntactic theory of se-

quential control. Theoretical Computer Science 52 (1987) pp 205-237.
6. M. Felleisen, R. Hieb : The revised report on the syntactic theory of sequential

control and state. Theoretical Computer Science 102 (1994) 235-271.
7. J.Y. Girard : Linear logic. Theoretical Computer Science. 50 (1987) 1-102.
8. J.Y. Girard, Y. Lafont, and P. Taylor : Proofs and Types. Cambridge University

Press, 1989.
9. T. Griffin : A formulae-as-types notion of control. Proc. POPL’90 (1990) 47-58.
10. M. Hofmann, T. Streicher : Continuation models are universal for λµ-calculus.

Proc. LICS’97 (1997) 387-397.
11. M. Hofmann, T. Streicher : Completeness of continuation models for λµ-calculus.

Information and Computation (to appear).
12. J.L. Krivine, M. Parigot: Programming with proofs. J. of Information Processing

and Cybernetics 26 (1990) 149-168.
13. J.L. Krivine : Lambda-calcul, types et modèles. Masson, 1990.
14. D. Leivant : Reasoning about functional programs and complexity classes associ-

ated with type disciplines. Proc. FOCS’83 (1983) 460-469.
15. C. Murthy : Extracting Constructive Content from Classical Proofs. PhD Thesis,

Cornell, 1990.

484 M. Parigot

16. M. Parigot : Free Deduction: an Analysis of ”Computations” in Classical Logic.
Proc. Russian Conference on Logic Programming, 1991, Springer LNCS 592 361-
380.

17. M. Parigot : λµ-calculus: an Algorithmic Interpretation of Classical Natural De-
duction. Proc. LPAR’92, Springer LNCS 624 (1992) 190-201.

18. M. Parigot : Strong normalisation for second order classical natural deduction,
Proc. LICS’93 (1993) 39-46.

19. C.H.L. Ong, C.A. Stewart : A Curry-Howard foundation for functional computa-
tion with control. Proc. POPL’97 (1997)

20. P. Selinger : Control categories and duality: on the categorical semantics of lambda-
mu calculus, Mathematical Structures in Computer Science (to appear).

	Introduction
	 About Typed lambda-Calculus and neg neg A = A
	Normalisation
	Correctness
	Discussion
	The Role of |

	 Typed lambda mu-Calculus with neg neg A = A
	lambda mu-Calculus
	Symmetric lambda mu-Calculus

	 Interpretation of Symmetric lambda-Calculus in Symmetric lambda mu-Calculus
	The Symmetric lambda-Calculus of Barbanera and Berardi
	Interpretation of the Symmetric lambda-Calculus in the Symmetric lambda mu-Calculus

