
Monads for functional programming

Philip Wadler, University of Glasgow?

Department of Computing Science, University of Glasgow, G12 8QQ, Scotland
(wadler@dcs.glasgow.ac.uk)

Abstract. The use of monads to structure functional programs is de-
scribed. Monads provide a convenient framework for simulating effects
found in other languages, such as global state, exception handling, out-
put, or non-determinism. Three case studies are looked at in detail: how
monads ease the modification of a simple evaluator; how monads act as
the basis of a datatype of arrays subject to in-place update; and how
monads can be used to build parsers.

1 Introduction

Shall I be pure or impure?
The functional programming community divides into two camps. Pure lan-

guages, such as Miranda0 and Haskell, are lambda calculus pure and simple.
Impure languages, such as Scheme and Standard ML, augment lambda calculus
with a number of possible effects, such as assignment, exceptions, or continu-
ations. Pure languages are easier to reason about and may benefit from lazy
evaluation, while impure languages offer efficiency benefits and sometimes make
possible a more compact mode of expression.

Recent advances in theoretical computing science, notably in the areas of type
theory and category theory, have suggested new approaches that may integrate
the benefits of the pure and impure schools. These notes describe one, the use
of monads to integrate impure effects into pure functional languages.

The concept of a monad, which arises from category theory, has been applied
by Moggi to structure the denotational semantics of programming languages [13,
14]. The same technique can be applied to structure functional programs [21,
23].

The applications of monads will be illustrated with three case studies. Sec-
tion 2 introduces monads by showing how they can be used to structure a simple
evaluator so that it is easy to modify. Section 3 describes the laws satisfied by
? Appears in: J. Jeuring and E. Meijer, editors, Advanced Functional Programming,

Proceedings of the B̊astad Spring School, May 1995, Springer Verlag Lecture Notes
in Computer Science 925. A previous version of this note appeared in: M. Broy,
editor, Program Design Calculi, Proceedings of the Marktoberdorf Summer School,
30 July–8 August 1992. Some errata fixed August 2001; thanks to Dan Friedman for
pointing these out.

0 Miranda is a trademark of Research Software Limited.

monads. Section 4 shows how monads provide a new solution to the old prob-
lem of providing updatable state in pure functional languages. Section 5 applies
monads to the problem of building recursive descent parsers; this is of interest in
its own right, and because it provides a paradigm for sequencing and alternation,
two of the central concepts of computing.

It is doubtful that the structuring methods presented here would have been
discovered without the insight afforded by category theory. But once discov-
ered they are easily expressed without any reference to things categorical. No
knowledge of category theory is required to read these notes.

The examples will be given in Haskell, but no knowledge of that is required
either. What is required is a passing familiarity with the basics of pure and im-
pure functional programming; for general background see [3, 12]. The languages
refered to are Haskell [4], Miranda [20], Standard ML [11], and Scheme [17].

2 Evaluating monads

Pure functional languages have this advantage: all flow of data is made explicit.
And this disadvantage: sometimes it is painfully explicit.

A program in a pure functional language is written as a set of equations.
Explicit data flow ensures that the value of an expression depends only on its
free variables. Hence substitution of equals for equals is always valid, making
such programs especially easy to reason about. Explicit data flow also ensures
that the order of computation is irrelevant, making such programs susceptible
to lazy evaluation.

It is with regard to modularity that explicit data flow becomes both a blessing
and a curse. On the one hand, it is the ultimate in modularity. All data in
and all data out are rendered manifest and accessible, providing a maximum of
flexibility. On the other hand, it is the nadir of modularity. The essence of an
algorithm can become buried under the plumbing required to carry data from
its point of creation to its point of use.

Say I write an evaluator in a pure functional language.

– To add error handling to it, I need to modify each recursive call to check
for and handle errors appropriately. Had I used an impure language with
exceptions, no such restructuring would be needed.

– To add a count of operations performed to it, I need to modify each recursive
call to pass around such counts appropriately. Had I used an impure language
with a global variable that could be incremented, no such restructuring would
be needed.

– To add an execution trace to it, I need to modify each recursive call to
pass around such traces appropriately. Had I used an impure language that
performed output as a side effect, no such restructuring would be needed.

Or I could use a monad.
These notes show how to use monads to structure an evaluator so that the

changes mentioned above are simple to make. In each case, all that is required
is to redefine the monad and to make a few local changes.

This programming style regains some of the flexibility provided by various
features of impure languages. It also may apply when there is no corresponding
impure feature. It does not eliminate the tension between the flexibility afforded
by explicit data and the brevity afforded by implicit plumbing; but it does ame-
liorate it to some extent.

The technique applies not just to evaluators, but to a wide range of functional
programs. For a number of years, Glasgow has been involved in constructing a
compiler for the functional language Haskell. The compiler is itself written in
Haskell, and uses the structuring technique described here. Though this paper
describes the use of monads in a program tens of lines long, we have experience
of using them in a program three orders of magnitude larger.

We begin with the basic evaluator for simple terms, then consider variations
that mimic exceptions, state, and output. We analyse these for commonalities,
and abstract from these the concept of a monad. We then show how each of the
variations fits into the monadic framework.

2.1 Variation zero: The basic evaluator

The evaluator acts on terms, which for purposes of illustration have been taken
to be excessively simple.

data Term = Con Int | Div Term Term

A term is either a constant Con a, where a is an integer, or a quotient, Div t u,
where t and u are terms.

The basic evaluator is simplicity itself.

eval :: Term → Int
eval (Con a) = a
eval (Div t u) = eval t ÷ eval u

The function eval takes a term to an integer. If the term is a constant, the
constant is returned. If the term is a quotient, its subterms are evaluated and
the quotient computed. We use ‘÷’ to denote integer division.

The following will provide running examples.

answer , error :: Term
answer = (Div (Div (Con 1972) (Con 2)) (Con 23))
error = (Div (Con 1) (Con 0))

Computing eval answer yields the value of ((1972 ÷ 2)÷ 23), which is 42 . The
basic evaluator does not incorporate error handling, so the result of eval error
is undefined.

2.2 Variation one: Exceptions

Say it is desired to add error checking, so that the second example above returns
a sensible error message. In an impure language, this is easily achieved with the
use of exceptions.

In a pure language, exception handling may be mimicked by introducing a
type to represent computations that may raise an exception.

data M a = Raise Exception | Return a
type Exception = String

A value of type M a either has the form Raise e, where e is an exception, or
Return a, where a is a value of type a. By convention, a will be used both as a
type variable, as in M a, and as a variable ranging over values of that type, as
in Return a.

(A word on the difference between ‘data’ and ‘type’ declarations. A ‘data’
declaration introduces a new data type, in this case M , and new constructors for
values of that type, in this case Raise and Return. A ‘type’ declaration introduces
a new name for an existing type, in this case Exception becomes another name
for String .)

It is straightforward, but tedious, to adapt the evaluator to this representa-
tion.

eval :: Term → M Int
eval (Con a) = Return a
eval (Div t u) = case eval t of

Raise e → Raise e
Return a →

case eval u of
Raise e → Raise e
Return b →

if b == 0
then Raise “divide by zero”
else Return (a ÷ b)

At each call of the evaluator, the form of the result must be checked: if an
exception was raised it is re-raised, and if a value was returned it is processed.
Applying the new evaluator to answer yields (Return 42), while applying it to
error yields (Raise “divide by zero”).

2.3 Variation two: State

Forgetting errors for the moment, say it is desired to count the number of divi-
sions performed during evaluation. In an impure language, this is easily achieved
by the use of state. Set a given variable to zero initially, and increment it by one
each time a division occurs.

In a pure language, state may be mimicked by introducing a type to represent
computations that act on state.

type M a = State → (a,State)
type State = Int

Now a value of type M a is a function that accepts the initial state, and returns
the computed value paired with the final state.

Again, it is straightforward but tedious to adapt the evaluator to this repre-
sentation.

eval :: Term → M Int
eval (Con a) x = (a, x)
eval (Div t u) x = let (a, y) = eval t x in

let (b, z) = eval u y in
(a ÷ b, z + 1)

At each call of the evaluator, the old state must be passed in, and the new state
extracted from the result and passed on appropriately. Computing eval answer 0
yields (42 , 2), so with initial state 0 the answer is 42 and the final state is 2 ,
indicating that two divisions were performed.

2.4 Variation three: Output

Finally, say it is desired to display a trace of execution. In an impure language,
this is easily done by inserting output commands at appropriate points.

In a pure language, output may be mimicked by introducing a type to rep-
resent computations that generate output.

type M a = (Output , a)
type Output = String

Now a value of type M a consists of the output generated paired with the value
computed.

Yet again, it is straightforward but tedious to adapt the evaluator to this
representation.

eval :: Term → M Int
eval (Con a) = (line (Con a) a, a)
eval (Div t u) = let (x , a) = eval t in

let (y , b) = eval u in
(x ++ y ++ line (Div t u) (a ÷ b), a ÷ b)

line :: Term → Int → Output
line t a = “eval (” ++ showterm t ++ “)⇐ ” ++ showint a ++ “←↩”

At each call of the evaluator, the outputs must be collected and assembled to
form the output of the enclosing call. The function line generates one line of the
output. Here showterm and showint convert terms and integers to strings, ++
concatenates strings, and “←↩” represents the string consisting of a newline.

Computing eval answer returns the pair (x , 42), where x is the string

eval (Con 1972)⇐ 1972
eval (Con 2)⇐ 2
eval (Div (Con 1972) (Con 2))⇐ 986
eval (Con 23)⇐ 23
eval (Div (Div (Con 1972) (Con 2)) (Con 23)))⇐ 42

which represents a trace of the computation.
From the discussion so far, it may appear that programs in impure languages

are easier to modify than those in pure languages. But sometimes the reverse
is true. Say that it was desired to modify the previous program to display the
execution trace in the reverse order:

eval (Div (Div (Con 1972) (Con 2)) (Con 23)))⇐ 42
eval (Con 23)⇐ 23
eval (Div (Con 1972) (Con 2))⇐ 986
eval (Con 2)⇐ 2
eval (Con 1972)⇐ 1972

This is simplicity itself to achieve with the pure program: just replace the term

x ++ y ++ line (Div t u) (a ÷ b)

with the term
line (Div t u) (a ÷ b) ++ y ++ x .

It is not so easy to modify the impure program to achieve this effect. The problem
is that output occurs as a side-effect of computation, but one now desires to
display the result of computing a term before displaying the output generated
by that computation. This can be achieved in a variety of ways, but all require
substantial modification to the impure program.

2.5 A monadic evaluator

Each of the variations on the interpreter has a similar structure, which may be
abstracted to yield the notion of a monad.

In each variation, we introduced a type of computations. Respectively, M
represented computations that could raise exceptions, act on state, and generate
output. By now the reader will have guessed that M stands for monad.

The original evaluator has the type Term → Int , while in each variation its
type took the form Term → M Int . In general, a function of type a → b is
replaced by a function of type a → M b. This can be read as a function that
accepts an argument of type a and returns a result of type b, with a possible
additional effect captured by M . This effect may be to act on state, generate
output, raise an exception, or what have you.

What sort of operations are required on the type M ? Examination of the
examples reveals two. First, we need a way to turn a value into the computation
that returns that value and does nothing else.

unit :: a → M a

Second, we need a way to apply a function of type a → M b to a computation of
type M a. It is convenient to write these in an order where the argument comes
before the function.

(?) :: M a → (a → M b)→ M b

A monad is a triple (M , unit , ?) consisting of a type constructor M and two
operations of the given polymorphic types. These operations must satisfy three
laws given in Section 3.

We will often write expressions in the form

m ? λa.n

where m and n are expressions, and a is a variable. The form λa.n is a lambda
expression, with the scope of the bound variable a being the expression n. The
above can be read as follows: perform computation m, bind a to the resulting
value, and then perform computation n. Types provide a useful guide. From the
type of (?), we can see that expression m has type M a, variable a has type a,
expression n has type M b, lambda expression λa.n has type a → M b, and the
whole expression has type M b.

The above is analogous to the expression

let a = m in n.

In an impure language, this has the same reading: perform computation m, bind
a to the resulting value, then perform computation n and return its value. Here
the types say nothing to distinguish values from computations: expression m has
type a, variable a has type a, expression n has type b, and the whole expression
has type b. The analogy with ‘let’ explains the choice of the order of arguments
to ?. It is convenient for argument m to appear before the function λa.n, since
computation m is performed before computation n.

The evaluator is easily rewritten in terms of these abstractions.

eval :: Term → M Int
eval (Con a) = unit a
eval (Div t u) = eval t ? λa. eval u ? λb. unit (a ÷ b)

A word on precedence: lambda abstraction binds least tightly and application
binds most tightly, so the last equation is equivalent to the following.

eval (Div t u) = ((eval t) ? (λa. ((eval u) ? (λb. (unit (a ÷ b))))))

The type Term → M Int indicates that the evaluator takes a term and performs a
computation yielding an integer. To compute (Con a), just return a. To compute
(Div t u), first compute t , bind a to the result, then compute u, bind b to the
result, and then return a ÷ b.

The new evaluator is a little more complex than the original basic evaluator,
but it is much more flexible. Each of the variations given above may be achieved
by simply changing the definitions of M , unit , and ?, and by making one or two
local modifications. It is no longer necessary to re-write the entire evaluator to
achieve these simple changes.

2.6 Variation zero, revisited: The basic evaluator

In the simplest monad, a computation is no different from a value.

type M a = a

unit :: a → I a
unit a = a

(?) :: M a → (a → M b)→ M b
a ? k = k a

This is called the identity monad: M is the identity function on types, unit is
the identity function, and ? is just application.

Taking M , unit , and ? as above in the monadic evaluator of Section 2.5 and
simplifying yields the basic evaluator of Section 2.1

2.7 Variation one, revisited: Exceptions

In the exception monad, a computation may either raise an exception or return
a value.

data M a = Raise Exception | Return a
type Exception = String

unit :: a → M a
unit a = Return a

(?) :: M a → (a → M b)→ M b
m ? k = case m of

Raise e → Raise e
Return a → k a

raise :: Exception → M a
raise e = Raise e

The call unit a simply returns the value a. The call m ? k examines the result
of the computation m: if it is an exception it is re-raised, otherwise the function
k is applied to the value returned. Just as ? in the identity monad is function
application, ? in the exception monad may be considered as a form of strict
function application. Finally, the call raise e raises the exception e.

To add error handling to the monadic evaluator, take the monad as above.
Then just replace unit (a ÷ b) by

if b == 0
then raise “divide by zero”
else unit (a ÷ b)

This is commensurate with change required in an impure language.
As one might expect, this evaluator is equivalent to the evaluator with ex-

ceptions of Section 2.2. In particular, unfolding the definitions of unit and ? in
this section and simplifying yields the evaluator of that section.

2.8 Variation two, revisited: State

In the state monad, a computation accepts an initial state and returns a value
paired with the final state.

type M a = State → (a,State)
type State = Int

unit :: a → M a
unit a = λx . (a, x)

(?) :: M a → (a → M b)→ M b
m ? k = λx . let (a, y) = m x in

let (b, z) = k a y in
(b, z)

tick :: M ()
tick = λx . ((), x + 1)

The call unit a returns the computation that accept initial state x and returns
value a and final state x ; that is, it returns a and leaves the state unchanged.
The call m ? k performs computation m in the initial state x , yielding value a
and intermediate state y ; then performs computation k a in state y , yielding
value b and final state z . The call tick increments the state, and returns the
empty value (), whose type is also written ().

In an impure language, an operation like tick would be represented by a
function of type ()→ (). The spurious argument () is required to delay the effect
until the function is applied, and since the output type is () one may guess that
the function’s purpose lies in a side effect. In contrast, here tick has type M ():
no spurious argument is needed, and the appearance of M explicitly indicates
what sort of effect may occur.

To add execution counts to the monadic evaluator, take the monad as above.
Then just replace unit (a ÷ b) by

tick ? λ(). unit (a ÷ b)

(Here λ . e is equivalent to λx . e where x :: () is some fresh variable that does not
appear in e; it indicates that the value bound by the lambda expression must be
().) Again, this is commensurate with change required in an impure language.
Simplifying yields the evaluator with state of Section 2.3.

2.9 Variation three, revisited: Output

In the output monad, a computation consists of the output generated paired
with the value returned.

type M a = (Output , a)
type Output = String

unit :: a → M a
unit a = (“ ”, a)

(?) :: M a → (a → M b)→ M b
m ? k = let (x , a) = m in

let (y , b) = k a in
(x ++ y , b)

out :: Output → M ()
out x = (x , ())

The call unit a returns no output paired with a. The call m ? k extracts output
x and value a from computation m, then extracts output y and value b from
computation k a, and returns the output formed by concatenating x and y paired
with the value b. The call out x returns the computation with output x and
empty value ().

To add execution traces to the monadic evaluator, take the monad as above.
Then in the clause for Con a replace unit a by

out (line (Con a) a) ? λ(). unit a

and in the clause for Div t u replace unit (a ÷ b) by

out (line (Div t u) (a ÷ b)) ? λ(). unit (a ÷ b)

Yet again, this is commensurate with change required in an impure language.
Simplifying yields the evaluator with output of Section 2.4.

To get the output in the reverse order, all that is required is to change the
definition of ?, replacing x ++ y by y ++ x . This is commensurate with the change
required in the pure program, and rather simpler than the change required in
an impure program.

You might think that one difference between the pure and impure versions is
that the impure version displays output as it computes, while the pure version
will display nothing until the entire computation completes. In fact, if the pure
language is lazy then output will be displayed in an incremental fashion as the
computation occurs. Furthermore, this will also happen if the order of output is
reversed, which is much more difficult to arrange in an impure language. Indeed,
the easiest way to arrange it may be to simulate lazy evaluation.

3 Monad laws

The operations of a monad satisfy three laws.

– Left unit. Compute the value a, bind b to the result, and compute n. The
result is the same as n with value a substituted for variable b.

unit a ? λb.n = n[a/b].

– Right unit. Compute m, bind the result to a, and return a. The result is the
same as m.

m ? λa. unit a = m.

– Associative. Compute m, bind the result to a, compute n, bind the result to
b, compute o. The order of parentheses in such a computation is irrelevant.

m ? (λa.n ? λb. o) = (m ? λa.n) ? λb. o.

The scope of the variable a includes o on the left but excludes o on the right,
so this law is valid only when a does not appear free in o.

A binary operation with left and right unit that is associative is called a monoid.
A monad differs from a monoid in that the right operand involves a binding
operation.

To demonstrate the utility of these laws, we prove that addition is associative.
Consider a variant of the evaluator based on addition rather than division.

data Term = Con Int | Add Term Term

eval :: Term → M Int
eval (Con a) = unit a
eval (Add t u) = eval t ? λa. eval u ? λb. unit (a ÷ b)

We show that evaluation of

Add t (Add u v) and Add (Add t u) v ,

both compute the same result. Simplify the left term:

eval (Add t (Add u v))
= { def’n eval }

eval t ? λa. eval (Add u v) ? λx . unit (a + x)
= { def’n eval }

eval t ? λa. (eval u ? λb. eval v ? λc. unit (b + c)) ? λx . unit (a + x)
= { associative }

eval t ? λa. eval u ? λb. eval v ? λc. unit (b + c) ? λx . unit (a + x)
= { left unit }

eval t ? λa. eval u ? λb. eval v ? λc. unit (a + (b + c))

Simplify the right term similarly:

eval (Add (Add t u) v)
= { as before }

eval t ? λa. eval u ? λb. eval v ? λc. unit ((a + b) + c)

The result follows by the associativity of addition. This proof is trivial; without
the monad laws, it would be impossible.

The proof works in any monad: exception, state, output. This assumes that
the code is as above: if it is modified then the proof also must be modified. Sec-
tion 2.3 modified the program by adding calls to tick . In this case, associativity
still holds, as can be demonstrated using the law

tick ? λ().m = m ? λ(). tick

which holds so long at tick is the only action on state within m. Section 2.4
modified the program by adding calls to line. In this case, the addition is no
longer associative, in the sense that changing parentheses will change the trace,
though the computations will still yield the same value.

As another example, note that for each monad we can define the following
operations.

map :: (a → b)→ (M a → M b)
map f m = m ? λa. unit (f a)

join :: M (M a)→ M a
join z = z ? λm.m

The map operation simply applies a function to the result yielded by a compu-
tation. To compute map f m, first compute m, bind a to the result, and then
return f a. The join operation is trickier. Let z be a computation that itself
yields a computation. To compute join z , first compute z , binds m to the result,
and then behaves as computation m. Thus, join flattens a mind-boggling double
layer of computation into a run-of-the-mill single layer of computation. As we
will see in Section 5.1, lists form a monad, and for this monad map applies a
function to each element of a list, and join concatenates a list of lists.

Using id for the identity function (id x = x), and (·) for function composition
((f · g) x = f (g x)), one can then formulate a number of laws.

map id = id
map (f · g) = map f ·map g

map f · unit = unit · f
map f · join = join ·map (map f)

join · unit = id
join ·map unit = id
join ·map join = join · join

m ? k = join (map k m)

The proof of each is a simple consequence of the definitions of map and join and
the three monad laws.

Often, monads are defined not in terms of unit and ?, but rather in terms
of unit , join, and map [10, 13]. The three monad laws are replaced by the first
seven of the eight laws above. If one defines ? by the eighth law, then the three
monad laws follow. Hence the two definitions are equivalent.

4 State

Arrays play a central role in computing because they closely match current
architectures. Programs are littered with array lookups such as x [i] and array
updates such as x [i] := v . These operations are popular because array lookup is
implemented by a single indexed fetch instruction, and array update by a single
indexed store.

It is easy to add arrays to a functional language, and easy to provide efficient
array lookup. How to provide efficient array update, on the other hand, is a
question with a long history. Monads provide a new answer to this old question.

Another question with a long history is whether it is desirable to base pro-
grams on array update. Since so much effort has gone into developing algorithms
and architectures based on arrays, we will sidestep this debate and simply assume
the answer is yes.

There is an important difference between the way monads are used in the
previous section and the way monads are used here. The previous section showed
monads help to use existing language features more effectively; this section shows
how monads can help define new language features. No change to the program-
ming language is required, but the implementation must provide a new abstract
data type, perhaps as part of the standard prelude.

Here monads are used to manipulate state internal to the program, but
the same techniques can be use to manipulate extenal state: to perform in-
put/output, or to communicate with other programming languages. The Glas-
gow implementation of Haskell uses a design based on monads to provide in-
put/output and interlanguage working with the imperative programming lan-
guage C [15]. This design has been adopted for version 1.3 of the Haskell stan-
dard.

4.1 Arrays

Let Arr be the type of arrays taking indexes of type Ix and yielding values of
type Val . The key operations on this type are

newarray :: Val → Arr ,
index :: Ix → Arr → Val ,
update :: Ix → Val → Arr → Arr .

The call newarray v returns an array with all entries set to v ; the call index i x
returns the value at index i in array x ; and the call update i v x returns an array
where index i has value v and the remainder is identical to x . The behaviour of
these operations is specified by the laws

index i (newarray v) = v ,
index i (update i v x) = v ,
index i (update j v x) = index i x , if i 6= j .

In practice, these operations would be more complex; one needs a way to specify
the index bounds, for instance. But the above suffices to explicate the main
points.

The efficient way to implement the update operation is to overwrite the
specified entry of the array, but in a pure functional language this is only safe
if there are no other pointers to the array extant when the update operation is
performed. An array satisfying this property is called single threaded, following
Schmidt [18].

Consider building an interpreter for a simple imperative language. The ab-
stract syntax for this language is represented by the following data types.

data Term = Var Id | Con Int | Add Term Term
data Comm = Asgn Id Term | Seq Comm Comm | If Term Comm Comm
data Prog = Prog Comm Term

Here Id : baastad .tex , v1 .1 .1 .11996/02/2915 : 17 : 01wadlerExp is an unspeci-
fied type of identifiers. A term is a variable, a constant, or the sum of two terms;
a command is an assignment, a sequence of two commands, or a conditional;
and a program consists of a command followed by a term.

The current state of execution will be modelled by an array where the indexes
are identifiers and the corresponding values are integers.

type State = Arr
type Ix = Id
type Val = Int

Here is the interpreter.

eval :: Term → State → Int
eval (Var i) x = index i x
eval (Con a) x = a
eval (Add t u) x = eval t x + eval u x

exec :: Comm → State → State
exec (Asgn i t) x = update i (eval t x) x
exec (Seq c d) x = exec d (exec c x)
exec (If t c d) x = if eval t x == 0 then exec c x else exec d x

elab :: Prog → Int
elab (Prog c t) = eval t (exec c (newarray 0))

This closely resembles a denotational semantics. The evaluator for terms takes a
term and a state and returns an integer. Evaluation of a variable is implemented
by indexing the state. The executor for commands takes a command and the
initial state and returns the final state. Assignment is implemented by updating
the state. The elaborator for programs takes a program and returns an integer.
It executes the command in an initial state where all identifiers map to 0 , then
evaluates the given expression in the resulting state and returns its value.

The state in this interpreter is single threaded: at any moment of execution
there is only one pointer to the state, so it is safe to update the state in place.
In order for this to work, the update operation must evaluate the new value
before placing it in the array. Otherwise, the array may contain a closure that
itself contains a pointer to the array, violating the single threading property. In
semantic terms, one says that update is strict in all three of its arguments.

A number of researchers have proposed analyses that determine whether a
given functional program uses an array in a single threaded manner, with the
intent of incorporating such an analysis into an optimising compiler. Most of
these analyses are based on abstract interpretation [1]. Although there has been
some success in this area, the analyses tend to be so expensive as to be intractable
[2, 7].

Even if such analyses were practicable, their use may be unwise. Optimising
update can affect a program’s time and space usage by an order of magnitude or
more. The programmer must be assured that such an optimisation will occur in
order to know that the program will run adequately fast and within the available
space. It may be better for the programmer to indicate explicitly that an array
should be single threaded, rather than leave it to the vagaries of an optimising
compiler.

Again, a number of researchers have proposed techniques for indicating that
an array is single threaded. Most of these techniques are based on type systems
[6, 19, 22]. This area seems promising, although the complexities of these type
systems remain formidable.

The following section presents another way of indicating explicitly the in-
tention that an array be single threaded. Naturally, it is based on monads. The
advantage of this method is that it works with existing type systems, using only
the idea of an abstract data type.

4.2 Array transformers

The monad of array transformers is simply the monad of state transformers,
with the state taken to be an array. The definitions of M , unit , ? are as before.

type M a = State → (a,State)
type State = Arr

unit :: a → M a
unit a = λx . (a, x)

(?) :: M a → (a → M b)→ M b
m ? k = λx . let (a, y) = m x in

let (b, z) = k a y in
(b, z)

Previously, our state was an integer and we had an additional operation tick act-
ing upon the state. Now our state is an array, and we have additional operations

corresponding to array creation, indexing, and update.

block :: Val → M a → a
block v m = let (a, x) = m (newarray v) in a

fetch :: Ix → M Val
fetch i = λx . (index i x , x)

assign :: Ix → Val → M ()
assign i v = λx . ((), update i v x)

The call block v m creates a new array with all locations initialised to v , applies
monad m to this initial state to yield value a and final state x , deallocates the
array, and returns a. The call fetch i returns the value at index i in the current
state, and leaves the state unchanged. The call assign i v returns the empty value
(), and updates the state so that index i contains value v .

A little thought shows that these operations are indeed single threaded. The
only operation that could duplicate the array is fetch, but this may be imple-
mented as follows: first fetch the entry at the given index in the array, and then
return the pair consisting of this value and the pointer to the array. In semantic
terms, fetch is strict in the array and the index, but not in the value located
at the index, and assign is strict in the array and the index, but not the value
assigned.

(This differs from the previous section, where in order for the interpreter to
be single threaded it was necessary for update to be strict in the given value. In
this section, as we shall see, this strictness is removed but a spurious sequenc-
ing is introduced for evaluation of terms. In the following section, the spurious
sequencing is removed, but the strictness will be reintroduced.)

We may now make M into an abstract data type supporting the five operations
unit , ?, block , fetch, and assign. The operation block plays a central role, as it is
the only one that does not have M in its result type. Without block there would
be no way to write a program using M that did not have M in its output type.

Making M into an abstract data type guarantees that single threading is
preserved, and hence it is safe to implement assignment with an in-place update.
The use of data abstraction is essential for this purpose. Otherwise, one could
write programs such as

λx . (assign i v x , assign i w x)

that violate the single threading property.

The interpreter may now be rewritten as follows.

eval :: Term → M Int
eval (Var i) = fetch i
eval (Con a) = unit a
eval (Add t u) = eval t ? λa. eval u ? λb. unit (a + b)

exec :: Comm → M ()
exec (Asgn i t) = eval t ? λa. assign i a
exec (Seq c d) = exec c ? λ(). exec d ? λ(). unit ()
exec (If t c d) = eval t ? λa.

if a == 0 then exec c else exec d

elab :: Prog → Int
elab (Prog c t) = block 0 (exec c ? λ(). eval t ? λa. unit a)

The types show that evaluation of a term returns an integer and may access or
modify the state, and that execution of a term returns nothing and may access
or modify the state. In fact, evaluation only accesses the state and never alters
it — we will consider shortly a more refined system that allows us to indicate
this.

The abstract data type for M guarantees that it is safe to perform updates
in place – no special analysis technique is required. It is easy to see how the
monad interpreter can be derived from the original, and (using the definitions
given earlier) the proof of their equivalence is straightforward.

The rewritten interpreter is slightly longer than the previous version, but
perhaps slightly easier to read. For instance, execution of (Seq c d) can be read:
compute the execution of c, then compute the execution of d , then return noth-
ing. Compare this with the previous version, which has the unnerving property
that exec d appears to the left of exec c.

One drawback of this program is that it introduces too much sequencing.
Evaluation of (Add t u) can be read: compute the evaluation of t , bind a to the
result, then compute the evaluation of u, bind b to the result, then return a + b.
This is unfortunate, in that it imposes a spurious ordering on the evaluation of t
and u that was not present in the original program. The order does not matter
because although eval depends on the state, it does not change it. To remedy
this we will augment the monad of state transformers M with a second monad
M ′ of state readers.

4.3 Array readers

Recall that the monad of array transformers takes an initial array and returns
a value and a final array.

type M a = State → (a,State)
type State = Arr

The corresponding monad of array readers takes an array and returns a value.
No array is returned because it is assumed identical to the original array.

type M ′ a = State → a

unit ′ :: a → M ′ a
unit ′ a = λx . a

(?′) :: M ′ a → (a → M ′ b)→ M ′ b
m ?′ k = λx . let a = m x in k a x

fetch ′ :: Ix → M ′Val
fetch ′ i = λx . index i x

The call unit ′ a ignores the given state x and returns a. The call m ?′ k performs
computation m in the given state x , yielding value a, then performs computation
k a in the same state x . Thus, unit ′ discards the state and ?′ duplicates it. The
call fetch ′ i returns the value in the given state x at index i .

Clearly, computations that only read the state are a subset of the computa-
tions that may read and write the state. Hence there should be a way to coerce
a computation in monad M ′ into one in monad M .

coerce :: M ′ a → M a
coerce m = λx . let a = m x in (a, x)

The call coerce m performs computation m in the initial state x , yielding a,
and returns a paired with state x . The function coerce enjoys a number of
mathematical properties to be discussed shortly.

Again, these operations maintain single threading if suitably implemented.
The definitions of ?′ and coerce must both be strict in the intermediate value
a. This guarantees that when coerce m is performed in state x , the computation
of m x will reduce to a form a that contains no extant pointers to the state x
before the pair (a, x) is returned. Hence there will be only one pointer extant to
the state whenever it is updated.

A monad is commutative if it satisfies the law

m ? λa.n ? λb. o = n ? λb.m ? λa. o.

The scope of a includes n on the right and not on the left, so this law is valid
only when a does not appear free in n. Similarly, b must not appear free in m.
In a commutative monad the order of computation does not matter.

The state reader monad is commutative, while the state transfomer monad
is not. So no spurious order is imposed on computations in the state reader
monad. In particular, the call m ?′ k may safely be implemented so that m and
k a are computed in parallel. However, the final result must still be strict in
a. For instance, with the annotations used in the GRIP processor, ?′ could be
defined as follows.

m ?′ k = λx . let a = m x in
let b = k a x in
par a (par b (seq a b))

The two calls to par spark parallel computations of a and b, and the call to seq
waits for a to reduce to a non-bottom value before returning b.

These operations may be packaged into two abstract data types, M and M ′,
supporting the eight operations unit , ?, unit ′, ?′, block , assign, fetch ′, and coerce.
The abstraction guarantees single threading, so assign may be implemented by
an in-place update.

The interpreter may be rewritten again.

eval :: Term → M ′ Int
eval (Var i) = fetch ′ i
eval (Con a) = unit ′ a
eval (Add t u) = eval t ?′ λa. eval u ?′ λb. unit ′ (a + b)

exec :: Comm → M ()
exec (Asgn i t) = coerce (eval t) ? λa. assign i a
exec (Seq c d) = exec c ? λ(). exec d ? λ(). unit ()
exec (If t c d) = coerce (eval t) ? λa.

if a == 0 then exec c else exec d

elab :: Prog → Int
elab (Prog c t) = block 0 (exec c ? λ(). coerce (eval t) ? λa. unit a)

This differs from the previous version in that eval is written in terms of M ′

rather than M , and calls to coerce surround the calls of eval in the other two
functions. The new types make it clear that eval depends upon the state but
does not alter it, while exec may both depend upon and alter the state.

The excessive sequencing of the previous version has been eliminated. In the
evaluation of (Add t u) the two subexpressions may be evaluated in either order
or concurrently.

A monad morphism from a monad M ′ to a monad M is a function h ::
M ′ a → M a that preserves the monad structure:

h (unit ′ a) = unit a,
h (m ?′ λa.n) = (h m) ? λa. (h n).

It often happens that one wishes to use a combination of monads to achieve a
purpose, and monad morphisms play the key role of converting from one monad
to another [9].

In particular, coerce is a monad morphism, and it follows immediately from
this that the two versions of the interpreter are equivalent.

4.4 Conclusion

How a functional language may provide in-place array update is an old problem.
This section has presented a new solution, consisting of two abstract data types
with eight operations between them. No change to the programming language
is required, other than to provide an implementation of these types, perhaps as
part of the standard prelude. The discovery of such a simple solution comes as

a surpise, considering the plethora of more elaborate solutions that have been
proposed.

A different way of expressing the same solution, based on continuation passing
style, has subsequently been proposed by Hudak [8]. But Hudak’s solution was
inspired by the monad solution, and the monad solution still appears to have
some small advantages [15].

Why was this solution not discovered twenty years ago? One possible reason is
that the data types involve higher-order functions in an essential way. The usual
axiomatisation of arrays involves only first-order functions, and so perhaps it did
not occur to anyone to search for an abstract data type based on higher-order
functions. That monads led to the discovery of the solution must count as a
point in their favour.

5 Parsers

Parsers are the great success story of theoretical computing. The BNF formalism
provides a concise and precise way to describe the syntax of a programming
language. Mathematical tests can determine if a BNF grammar is ambiguous or
vacuous. Transformations can produce an equivalent grammar that is easier to
parse. Compiler-compilers can turn a high-level specification of a grammar into
an efficient program.

This section shows how monads provide a simple framework for constructing
recursive descent parsers. This is of interest in its own right, and also because
the basic structures of parsing – sequencing and alternation – are fundamental
to all of computing. It also provides a demonstration of how monads can model
backtracking (or angelic non-determinism).

5.1 Lists

Our representation of parsers depends upon lists. Lists are ubiquitous in func-
tional programming, and it is surprising that we have managed to get by so
far while barely mentioning them. Actually, they have appeared in disguise, as
strings are simply lists of characters.

We review some notation. We write [a] for the type of a list with elements
all of type a, and : for ‘cons’. Thus [1 , 2 , 3] = 1 : 2 : 3 : [], and both have type
[Int]. Strings are lists of characters, so String and [Char] are equivalent, and
“monad” is just an abbreviation for [‘m’, ‘o’, ‘n’, ‘a’, ‘d’].

It is perhaps not suprising that lists form a monad.

unit :: a → [a]
unit a = [a]

(?) :: [a]→ (a → [b])→ [b]
[] ? k = []
(a : x) ? k = k a ++ (x ? k)

The call unit a simply forms the unit list containing a. The call m ? k applies k
to each element of the list m, and appends together the resulting lists.

If monads encapsulate effects and lists form a monad, do lists correspond to
some effect? Indeed they do, and the effect they correspond to is choice. One
can think of a computation of type [a] as offering a choice of values, one for each
element of the list. The monadic equivalent of a function of type a → b is a
function of type a → [b]. This offers a choice of results for each argument, and
hence corresponds to a relation. The operation unit corresponds to the identity
relation, which associates each argument only with itself. If k :: a → [b] and
h :: b → [c], then

λa. k a ? λb. h b :: a → [c]

corresponds to the relational composition of k and h.
The list comprehension notation provides a convenient way of manipulating

lists. The behaviour is analogous to set comprehensions, except the order is
significant. For example,

[sqr a | a ← [1 , 2 , 3]] = [1 , 4 , 9]
[(a, b) | a ← [1 , 2], b ← “list”] = [(1 , ‘l’), (1 , ‘i’), (1 , ‘s’), (1 , ‘t’),

(2 , ‘l’), (2 , ‘i’), (2 , ‘s’), (2 , ‘t’)]

The list comprehension notation translates neatly into monad operations.

[t | x ← u] = u ? λx . unit t
[t | x ← u, y ← v] = u ? λx . v ? λy . unit t

Here t is an expression, x and y are variables (or more generally patterns), and u
and v are expressions that evaluate to lists. Connections between comprehensions
and monads have been described at length elsewhere [21].

5.2 Representing parsers

Parsers are represented in a way similar to state transformers.

type M a = State → [(a,State)]
type State = String

That is, the parser for type a takes a state representing a string to be parsed,
and returns a list of containing the value of type a parsed from the string, and
a state representing the remaining string yet to be parsed. The list represents
all the alternative possible parses of the input state: it will be empty if there is
no parse, have one element if there is one parse, have two elements if there are
two different possible parses, and so on.

Consider a simple parser for arithmetic expressions, which returns a tree of
the type considered previously.

data Term = Con Int | Div Term Term

Say we have a parser for such terms.

term :: M Term

Here are some examples of its use.

term “23 ” = [(Con 23 , “ ”)]
term “23 and more” = [(Con 23 , “ and more”)]
term “not a term” = []
term “((1972 ÷ 2)÷ 23)” = [(Div (Div (Con 1972) (Con 2)) (Con 23)), “ ”)]

A parser m is unambiguous if for every input x the list of possible parses m x
is either empty or has exactly one item. For instance, term is unambiguous. An
ambiguous parser may return a list with two or more alternative parsings.

5.3 Parsing an item

The basic parser returns the first item of the input, and fails if the input is
exhausted.

item :: M Char
item [] = []
item (a : x) = [(a, x)]

Here are two examples.

item “ ” = []
item “monad” = [(‘m’, “onad”)]

Clearly, item is unambiguous.

5.4 Sequencing

To form parsers into a monad, we require operations unit and ?.

unit :: a → M a
unit a x = [(a, x)]

(?) :: M a → (a → M b)→ M b
(m ? k) x = [(b, z) | (a, y)← m x , (b, z)← k a y]

The parser unit a accepts input x and yields one parse with value a paired with
remaining input x . The parser m ? k takes input x ; parser m is applied to input
x yielding for each parse a value a paired with remaining input y ; then parser
k a is applied to input y , yielding for each parse a value b paired with final
remaining output z .

Thus, unit corresponds to the empty parser, which consumes no input, and
? corresponds to sequencing of parsers.

Two items may be parsed as follows.

twoItems :: M (Char ,Char)
twoItems = item ? λa. item ? λb. unit (a, b)

Here are two examples.

twoItems “m” = []
twoItems “monad” = [((‘m’, ‘o’), “nad”)]

The parse succeeds only if there are at least two items in the list.
The three monad laws express that the empty parser is an identity for se-

quencing, and that sequencing is associative.

unit a ? λb.n = n[a/b]
m ? λa. unit a = m

m ? (λa.n ? λb. o) = (m ? λa.n) ? λb. o

If m is unambiguous and k a is unambiguous for every a, then m ? k is also
unambiguous.

5.5 Alternation

Parsers may also be combined by alternation.

zero :: M a
zero x = []

(⊕) :: M a → M a → M a
(m ⊕ n) x = m x ++ n x

The parser zero takes input x and always fails. The parser m ⊕ n takes input x
and yields all parses of m applied to input x and all parses of n applied to the
same input x .

Here is a parser that parses one or two items from the input.

oneOrTwoItems :: M String
oneOrTwoItems = (item ? λa. unit [a])

⊕ (item ? λa. item ? λb. unit [a, b])

Here are three examples.

oneOrTwoItems “ ” = []
oneOrTwoItems “m” = [(“m”, “ ”)]
oneOrTwoItems “monad” = [(“m”, “onad”), (“mo”, “nad”)]

The last yields two alternative parses, showing that alternation can yield am-
biguous parsers.

The parser that always fails is the identity for alternation, and alternation is
associative.

zero ⊕ n = n
m ⊕ zero = m

m ⊕ (n ⊕ o) = (m ⊕ n)⊕ o

Furthermore, zero is indeed a zero of ?, and ? distributes through ⊕.

zero ? k = zero
m ? λa. zero = zero
(m ⊕ n) ? k = (m ? k)⊕ (n ? k)

It is not the case that ? distributes rightward through ⊕ only because we are
representing alternative parses by an ordered list; if we used an unordered bag,
then m ? λa. (k a ⊕ h a) = (m ? k)⊕ (m ? h) would also hold. An unambiguous
parser yields a list of length at most one, so the order is irrelevant, and hence
this law also holds whenever either side is unambiguous (which implies that both
sides are).

5.6 Filtering

A parser may be filtered by combining it with a predicate.

(�) :: M a → (a → Bool)→ M a
m � p = m ? λa. if p a then unit a else zero

Given a parser m and a predicate on values p, the parser m �p applies parser m
to yield a value a; if p a holds it succeeds with value a, otherwise it fails. Note
that filtering is written in terms of previously defined operators, and need not
refer directly to the state.

Let isLetter and isDigit be the obvious predicates. Here are two parsers.

letter :: M Char
letter = item � isLetter

digit :: M Int
digit = (item � isDigit) ? λa. unit (ord a − ord ‘0’)

The first succeeds only if the next input item is a letter, and the second succeeds
only if it is a digit. The second also converts the digit to its corresponding value,
using ord :: Char → Int to convert a character to its ASCII code. Assuming that
� has higher precedence than ? would allow some parentheses to be dropped
from the second definition.

A parser for a literal recognises a single specified character.

lit :: Char → M Char
lit c = item � (λa. a == c)

The parser lit c succeeds if the input begins with character c, and fails otherwise.

lit ‘m’ “monad” = [(‘m’, “onad”)]
lit ‘m’ “parse” = []

From the previous laws, it follows that filtering preserves zero and distributes
through alternation.

zero � p = zero
(m ⊕ n) � p = (m � p)⊕ (n � p)

If m is an unambiguous parser, so is m � p.

5.7 Iteration

A single parser may be iterated, yielding a list of parsed values.

iterate :: M a → M [a]
iterate m = (m ? λa. iterate m ? λx . unit (a : x))

⊕ unit []

Given a parser m, the parser iterate m applies parser m in sequence zero or more
times, returning a list of all the values parsed. In the list of alternative parses,
the longest parse is returned first.

Here is an example.

iterate digit “23 and more” = [([2 , 3], “ and more”),
([2], “3 and more”),
([], “23 and more”)]

Here is one way to parse a number.

number :: M Int
number = digit ? λa. iterate digit ? λx . unit (asNumber (a : x))

Here asNumber takes a list of one or more digits and returns the corresponding
number. Here is an example.

number “23 and more” = [(23 , “ and more”),
(2 , “3 and more”)]

This supplies two possible parses, one which parses both digits, and one which
parses only a single digit. A number is defined to contain at least one digit, so
there is no parse with zero digits.

As this last example shows, often it is more natural to design an iterator to
yield only the longest possible parse. The next section describes a way to achieve
this.

5.8 Biased choice

Alternation, written m ⊕ n, yields all parses yielded by m followed by all parses
yielded by n. For some purposes, it is more sensible to choose one or the other:
all parses by m if there are any, and all parses by n otherwise. This is called
biased choice.

(�) :: M a → M a → M a
(m � n) x = if m x 6== [] then m x else n x

Biased choice, written m�n, yields the same parses as m, unless m fails to yield
any parse, in which case it yields the same parses as n.

Here is iteration, rewritten with biased choice.

reiterate :: M a → M [a]
reiterate m = (m ? λa. reiterate m ? λx . unit (a : x))

� unit []

The only difference is to replace ⊕ with �. Instead of yielding a list of all possible
parses with the longest first, this yields only the longest possible parse.

Here is the previous example revisited.

reiterate digit “23 and more” = [([2 , 3], “ and more”)]

In what follows, number is taken to be rewritten with reiterate.

number :: M Int
number = digit ? λa. reiterate digit ? λx . unit (asNumber (a : x))

Here is an example that reveals a little of how ambiguous parsers may be
used to search a space of possibilities. We use reiterate to find all ways of taking
one or two items from a string, zero or more times.

reiterate oneOrTwoItems “many” = [([“m”, “a”, “n”, “y”], “ ”),
([“m”, “a”, “ny”], “ ”),
([“m”, “an”, “y”], “ ”),
([“ma”, “n”, “y”], “ ”),
([“ma”, “ny”], “ ”)]

This combines alternation (in oneOrTwoItems) with biased choice (in reiterate).
There are several possible parses, but for each parse oneOrTwoItems has been
applied until the entire input has been consumed. Although this example is
somewhat fanciful, a similar technique could be used to find all ways of breaking
a dollar into nickels, dimes, and quarters.

If m and n are unambiguous, then m � n and reiterate m are also unam-
biguous. For unambiguous parsers, sequencing distributes right through biased
choice:

(m ? k)� (m ? h) = m ? λa. k a � h a

whenever m is unambiguous. Unlike with alternation, sequencing does not dis-
tribute left through biased choice, even for unambiguous parsers.

5.9 A parser for terms

It is now possible to write the parser for terms alluded to at the beginning. Here
is a grammar for fully parenthesised terms, expressed in BNF.

term ::= number | ‘(’ term ‘÷’ term ‘)’

This translates directly into our notation as follows. Note that our notation,
unlike BNF, specifies exactly how to construct the returned value.

term :: M Term
term = (number ? λa.

unit (Con a))
⊕ (lit ‘(’ ? λ .

term ? λt .
lit ‘÷’ ? λ .
term ? λu.
lit ‘)’ ? λ .
unit (Div t u))

(Here λ . e is equivalent to λx . e where x is some fresh variable that does not
appear in e; it indicates that the value bound by the lambda expression is not
of interest.) Examples of the use of this parser appeared earlier.

The above parser is written with alternation, but as it is unambiguous, it
could just as well have been written with biased choice. The same is true for all
the parsers in the next section.

5.10 Left recursion

The above parser works only for fully parenthesised terms. If we allow unparen-
thesised terms, then the operator ÷ should associate to the left. The usual way
to express such a grammar in BNF is as follows.

term ::= term ‘÷’ factor | factor
factor ::= number | ‘(’ term ‘)’

This translates into our notation as follows.

term :: M Term
term = (term ? λt .

lit ‘÷’ ? λ .
factor ? λu.
unit (Div t u))

⊕ factor

factor :: M Term
factor = (number ? λa.

unit (Con a))
⊕ (lit ‘(’ ? λ .

term ? λt .
lit ‘)’ ? λ .
unit t)

There is no problem with factor , but any attempt to apply term results in an
infinite loop. The problem is that the first step of term is to apply term, leading

to an infinite regress. This is called the left recursion problem. It is a difficulty
for all recursive descent parsers, functional or otherwise.

The solution is to rewrite the grammar for term in the following equivalent
form.

term ::= factor term ′

term ′ ::= ‘÷’ factor term ′ | unit

where as usual unit denotes the empty parser. This then translates directly into
our notation.

term :: M Term
term = factor ? λt . term ′ t

term ′ :: Term → M Term
term ′ t = (lit ‘÷’ ? λ .

factor ? λu.
term ′ (Div t u))

⊕ unit t

Here term ′ parses the remainder of a term; it takes an argument corresponding
to the term parsed so far.

This has the desired effect.

term “1972 ÷ 2 ÷ 23 ” = [((Div (Div (Con 1972) (Con 2)) (Con 23)), “ ”)]
term “1972 ÷ (2 ÷ 23)” = [((Div (Con 1972) (Div (Con 2) (Con 23))), “ ”)]

In general, the left-recursive definition

m = (m ? k)⊕ n

can be rewritten as
m = n ? (closure k)

where
closure :: (a → M a)→ (a → M a)
closure k a = (k a ? closure k)⊕ unit a

Here m :: M a, n :: M a, and k :: a → M a.

5.11 Improving laziness

Typically, a program might be represented as a function from a list of characters
– the input – to another list of characters – the output. Under lazy evaluation,
usually only some of the input need be read before the first part of the output
list is produced. This ‘on line’ behavior is essential for some purposes.

In general, it is unreasonable to expect such behaviour from a parser, since
in general it cannot be known that the input will be successfully parsed until all
of it is read. However, in certain special cases one may hope to do better.

Consider applying reiterate m to a string beginning with an instance of m.
In this case, the parse cannot fail: regardless of the remainder of the string, one
would expect the parse yielded to be a list beginning with the parsed value. Under

lazy evaluation, one might expect to be able to generate output corresponding
to the first digit before the remaining input has been read.

But this is not what happens: the parser reads the entire input before any
output is generated. What is necessary is some way to encode that the parser
reiterate m always succeeds. (Even if the beginning of the input does not match
m, it will yield as a value the empty list.) This is provided by the function
guarantee.

guarantee :: M a → M a
guarantee m x = let u = m x in (fst (head u), snd (head u)) : tail u

Here fst (a, b) = a, snd (a, b) = b, head (a : x) = a, and tail (a : x) = x .
Here is reiterate with the guarantee added.

reiterate :: M a → M [a]
reiterate m = guarantee ((m ? λa. reiterate m ? λx . unit (a : x))

� unit [])

This ensures that reiterate m and all of its recursive calls return a list with
at least one answer. As a result, the behaviour under lazy evaluation is much
improved.

The preceding explanation is highly operational, and it is worth noting that
denotational semantics provides a useful alternative approach. Let ⊥ denote a
program that does not terminate. One can verify that with the old definition

reiterate digit (‘1’ : ⊥) = ⊥

while with the new definition

reiterate digit (‘1’ : ⊥) = ((‘1’ : ⊥),⊥) : ⊥

Thus, given that the input begins with the character ‘1’ but that the remainder
of the input is unknown, with the old definition nothing is known about the
output, while with the new definition it is known that the output yields at least
one parse, the value of which is a list which begins with the character ‘1’.

Other parsers can also benefit from a judicious use of guarantee, and in
particular iterate can be modified like reiterate.

5.12 Conclusion

We have seen that monads provide a useful framework for structuring recursive
descent parsers. The empty parser and sequencing correspond directly to unit
and ?, and the monads laws reflect that sequencing is associative and has the
empty parser as a unit. The failing parser and alternation correspond to zero
and ⊕, which satisfy laws reflecting that alternation is associative and has the
failing parser as a unit, and that sequencing distributes through alternation.

Sequencing and alternation are fundamental not just to parsers but to much
of computing. If monads capture sequencing, then it is reasonable to ask: what

captures both sequencing and alternation? It may be that unit , ?, zero, and ⊕,
together with the laws above, provide such a structure. Further experiments are
needed. One hopeful indication is that a slight variation of the parser monad
yields a plausible model of Dijkstra’s guarded command language.

References

1. S. Abramsky and C. Hankin, Abstract Interpretation of Declarative Languages,
Ellis Horwood, 1987.

2. A. Bloss, Update analysis and the efficient implementation of functional aggre-
gates. In 4’th Symposium on Functional Programming Languages and Computer
Architecture, ACM, London, September 1989.

3. R. Bird and P. Wadler, Introduction to Functional Programming. Prentice Hall,
1987.

4. P. Hudak, S. Peyton Jones and P. Wadler, editors, Report on the Programming
Language Haskell: Version 1.1. Technical report, Yale University and Glasgow
University, August 1991.

5. J.-Y. Girard, Linear logic. Theoretical Computer Science, 50:1–102, 1987.

6. J. Guzmán and P. Hudak, Single-threaded polymorphic lambda calculus. In IEEE
Symposium on Logic in Computer Science, Philadelphia, June 1990.

7. P. Hudak, A semantic model of reference counting and its abstraction (detailed
summary). In ACM Conference on Lisp and Functional Programming, pp. 351–
363, Cambridge, Massachusetts, August 1986.

8. P. Hudak, Continuation-based mutable abstract data types, or how to have your
state and munge it too. Technical report YALEU/DCS/RR-914, Department of
Computer Science, Yale University, July 1992.

9. D. King and P. Wadler, Combining monads. In Glasgow Workshop on Functional
Programming, Ayr, July 1992. Workshops in Computing Series, Springer Verlag,
to appear.

10. S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.

11. R. Milner, M. Tofte, and R. Harper, The definition of Standard ML. MIT Press,
1990.

12. L. C. Paulson, ML for the Working Programmer. Cambridge University Press,
1991.

13. E. Moggi, Computational lambda-calculus and monads. In Symposium on Logic
in Computer Science, Asilomar, California; IEEE, June 1989. (A longer version is
available as a technical report from the University of Edinburgh.)

14. E. Moggi, An abstract view of programming languges. Course notes, University of
Edinburgh.

15. S. L. Peyton Jones and P. Wadler, Imperative functional programming. In 20’th
Symposium on Principles of Programming Languages, Charleston, South Carolina;
ACM, January 1993.

16. G. Plotkin, Call-by-name, call-by-value, and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

17. J. Rees and W. Clinger (eds.), The revised3 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 21(12):37–79, 1986.

18. D. Schmidt, Detecting global variables in denotational specifications. ACM Trans.
on Programming Languages and Systems, 7:299–310, 1985.

19. V. Swarup, U. S. Reddy, and E. Ireland, Assignments for applicative languages.
In Conference on Functional Programming Languages and Computer Architecture,
Cambridge, Massachusetts; LNCS 523, Springer Verlag, August 1991.

20. D. A. Turner, An overview of Miranda. In D. A. Turner, editor, Research Topics
in Functional Programming. Addison Wesley, 1990.

21. P. Wadler, Comprehending monads. In Conference on Lisp and Functional Pro-
gramming, Nice, France; ACM, June 1990.

22. Is there a use for linear logic? Conference on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM), New Haven, Connecticut; ACM, June 1991.

23. P. Wadler, The essence of functional programming (invited talk). In 19’th Sympo-
sium on Principles of Programming Languages, Albuquerque, New Mexico; ACM,
January 1992.

