
Higher-Order and Symbolic Computation, 13, 135–152, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Continuations: A Mathematical Semantics
for Handling Full Jumps

CHRISTOPHER STRACHEY
Reader in Computation at Oxford University, Programming Research Group, 45 Banbury Road, Oxford

CHRISTOPHER P. WADSWORTH∗ cpw@inf.rl.ac.uk
Independent Consultant

Abstract. This paper describes a method of giving the mathematical semantics of programming languages which
include the most general form of jumps.

1. Introduction

The purpose of this paper is to explain a method of giving the mathematical semantics of
a programming language which includes a very general form of jump (goto statement).
The general scheme for providing the semantics equations is that outlined in [13] although
there are some considerable differences in detail. Furthermore, in order to avoid as far as
possible a confusing proliferation in details, the actual language described in this paper is
a very rudimentary one—almost the only significant feature it has is its ability to jump at
inconvenient moments, and in particular to jump out of the evaluation of an expression.

The method used, which has come to be known as the method of “continuations”,
has been developed from the “tail functions” of Mazurkiewicz [5] and, independently,
by F.L. Morris [7], extending the work of Landin [3, 4]. Although our use of continua-
tions has become fairly widely known by word of mouth, it has not so far been published,
though Fischer [2] uses essentially the same technique (for a somewhat different purpose)
and Reynolds [9] shows how the use of continuations answers the order-of-application-
dependence problem for definitional interpreters.

The rest of this paper will assume a familiarity with the general method of approach ex-
plained in [12, 13]. For the benefit of readers who are unfamiliar with this, a very condensed
outline is given in Appendix A.1.

2. The problem of jumps

In the semantics given in [13] the value of a command is a function which transforms the
store, so that, in symbolic terms

C[[γ]](ρ) = θ
∗Contact address: Pagoda, 73 Orchard Way, Wantage, Oxon OX12 8EB, UK

136 STRACHEY AND WADSWORTH

whereC is the semantic function mapping commands to their meanings,γ is a command,
ρ the environment which gives the denotations associated with the identifiers inγ andθ is
a store transformation, i.e.

θ ∈ C = [S→ S]

whereS is the domain of machine states (or stores). We use the double brackets [[]] as
an aid to the eye to separate the program textγ from the value domain expressions which
form the rest of the equation.

The normal sequencing of commands is then naturally interpreted as performing one
store transformation after another, so that the overall effect is that of functional composition.
Thus, if we have two commandsγ0 andγ1 with store transformations given by

θ0 = C[[γ0]](ρ)

θ1 = C[[γ1]](ρ)

the effect of the sequence of commandsγ0;γ1 on any initial storeσ will be to produce a
store

σ ′ = θ1(θ2(σ))

so that the semantic equations for sequencing takes the form

C[[γo;γ1]](ρ) = (C[[γ1]](ρ)) ◦ (C[[γ0]](ρ)).

This simple scheme breaks down ifγ0 contains a jump to some external label. The difficulty
is that there is no meaning we can give toC[[γ0]](ρ)which will allow us to avoid performing
γ1 afterγ0, unless we abandon the simple explication of sequencing.

Various attempts to get round this difficulty have been made, but they only work satis-
factory in simple cases. They all depend, ultimately, on being able to break up the program
explicitly into segments which do not contain jumps. Only inside such segments can the
sequencing equation be used safely. When combining the segments it is necessary to end all
possible exits by a jump so that the successor can be given explicitly. This sort of scheme
works quite well for flow charts, although the large number of extra labels required seem
rather inelegant, but it fails in more complicated cases.

An important situation which resists this sort of treatment is an error exit from a function
(Algol 60: Type-procedure). The reason for the difficulty is that a jump is called for in
the middle of evaluating an expression, while there may be several partial results around.
The fact that functions involve abstraction and subsequent application is an extraneous
complication which only conceals the main problem of the jump and ensures that most
investigators do not consider it. We can sharpen our ideas and avoid this unnecessary
complication by using thevalof-resultis construction. In this we have anexpressionof
the formvalof γ and acommandof the formresultis ε. (Note that we make a distinction

CONTINUATIONS 137

between commands and expressions.) The value of an expression

valof § γ0

γ1

. . .

resultis ε′

. . . §|

is found by obeying the commandsγ0,γ1, . . . in sequence until a commandresultis ε′

is obeyed. The expressionε′ is then evaluated and this value is taken as the value of
the whole expression. (There are several language-dependent decisions to be made about
what happens if there is more than oneresultis command in thevalof body or if none is
encountered dynamically, and various problems of scope and interaction with functional
abstraction need to be settled. None of these is relevant to our present enquiry so they
will not be discussed further.) All programming languages which allow functions to be
defined have some construction which is semantically equivalent to theresultis command,
but many languages restrict its use so that it gets confused with function definition.

The difficult type of jump is inside the body of avalof block to a label which is outside. In
order to illustrate the semantics of these jumps, we shall use a small programming language
which we introduce in the next section.

3. A small “continuation” language

The definition follows the style of the language definitions given in [13]. We start by defining
the syntactic categories and metavariables. The syntax itself is given in a very idealised
form which omits all problems of parsing and ambiguity. All that remain are the basic
constructions which are semantically distinct.

3.1. Syntactic categories

ξ ∈ Id Usual Identifiers
γ ∈ Cmd Commands
ε ∈ Exp Expressions
φ ∈ Fn Some Primitive Commands

We use Greek letters, possibly decorated with subscripts and primes, as metavariables
ranging over the category indicated.

3.2. Syntax

3.2.1. Commands.

γ ::= φ | dummy |
γ0;γ1 | ε → γ0, γ1 | while ε do γ |
goto ε | § γ0;ξ1:γ1; . . . ξn−1:γn−1§| |
resultis ε

138 STRACHEY AND WADSWORTH

The definition uses a version of BNF. There is no presumption that variables in the
different clauses are in any way related. Inside a single clause subscripts are used to identify
the various components and these will be used below in the semantic equations.

The intention of most clauses should be fairly plain. The language is largely uninterpreted
(in the mathematician’s sense) and most of the useful operations will presumably be primi-
tive commands(φ). (Note that the assignment comes into this category.) The reason for this
is that we are only interested in jumps and a small set of related commands. Leaving the
others unspecified does not mean that we are unable to give semantic equations for them,
merely that we are not at the moment interested.

dummy is the command which has no effect.γ0;γ1 is the way of indicating sequencing—it
meansγ0 followed byγ1. ε → γ0, γ1 is the conditional command, equivalent to Algol 60’s
if ε then γ0 elseγ1. The next clause is awhile-loop and is only included so that we can
discuss its equivalence with a form involving a jump.

The next clause is the jump. If we have jumps, we clearly need some way of introducing
labels, and this is the purpose of the next clause. The symbols § and §| are statement
brackets (equivalent to Algol 60’sbegin andend). The whole clause is to be thought as
a block withξ1, . . . , ξn−1 as labels andγ0, . . . , γn−1 as commands, generally compound,
which may involve any of these labels. Any of these commands, of course, could themselves
contain inner blocks. Normal rules apply about names which clash. In the language as given
here, it might seem that identifiers can only stand for labels as this is the only identifier
binding clause. Clearly any practical language would need some extension, so we shall
allow identifiers also to denote truth values, but without specifying any explicit binding
mechanism in the language. The last clause has already been discussed.

3.2.2. Expressions.

ε ::= ξ | true | false |
ε0→ ε1, ε2 | valof γ

Expressions in this language form a very meagre set. They are either truth values (built up
from the constantstrue andfalse) or they are label values. Either kind can be compounded
by the conditional expressionε0→ ε1, ε2 (whereε0 needs to be a truth value thoughε1 and
ε2 can be both truth values or both label values). Similarly avalof expression can yield
either a truth value or a label value.

4. Semantics

4.1. Value domains

As usual we start our account of the semantics by discussing the value domains for the lan-
guage. The only data domain which is made explicit isT , which is the domain of truth values.
We also need the domainSof machine states (or stores); we useσ (possibly decorated) as
a variable denoting an individual state, and so we haveσ ∈ S. State transformations are
the functions fromS to S; we shall call this domainC and useθ as its typical element.

CONTINUATIONS 139

We also need to know the denotations of the identifiers in the language. We shall call the
domain of denotationsD (with δ as the typical element) and discuss later what its detailed
structure is. For the moment, we are only interested in the fact that such a domain exists, and
that there is a function, known as anenvironmentwhich gives the mapping from identifiers
to their denotations. We shall use the letterρ to stand for an environment, so that

ρ ∈ Env= [Id→ D].

4.2. Continuations

The difficulty of dealing with sequencing of commands which was mentioned in Section 2
springs ultimately from the way in which commands are combined to form a program. If,
as in [13], we regard the meaning of a commandγ as the store transformationC[[γ]](ρ),
the way in which this contributes to the meaning of a whole program depends crucially on
whether it isjump-free—i.e. always goes on to execute the following command—or whether
it is jump-dependent—i.e. may cause an escape exit or jump to an external label, in which
case the following command is irrelevant. This means that we cannot find a satisfactory
semantic equation forC[[γ0;γ1]](ρ) because we cannot determine whetherγ0 is jump-free
or not.

The solution to this problem is to abandon the idea of giving the state transformation for
each command in isolation. We must define, instead, a semantic function which yields, for
every commandγ , in a program, the state transformation which would be produced from
there to the end of the program. We shall use letterP for this function to distinguish it
from theC of [13]. In order to deal with the effect of the program followingγ , we need to
supply an extra argument,θ , which is the state transformation corresponding to this part of
the program. Ifγ is jump-free, we shall then have for the program includingγ

P[[γ]](ρ)(θ)= θ ◦ C[[γ]](ρ)

which can be interpreted as saying that the state transformation for the whole program,
starting from the commandγ , is that obtained by first performing the state transformation
specified byγ (i.e. C[[γ]](ρ)) and then that specified by the rest of the program (i.e.θ).
The argumentθ is called acontinuation(strictly acommand continuation) and is of type
C = [S→ S]. The semantic functionP thus has the functionality

P : [Cmd→ [Env→ [C→ [S→ S]]]] .

The meaning ofP[[γ]](ρ)(θ)whenγ is jump-dependent will be discussed later in detail,
but it is worth mentioning at once the crucial point that it need not depend on the argument
θ . This means that it is possible to “throw away” the normal continuation for a command,
and this is precisely what is needed for jumps.

The meaning of a continuation may perhaps become clearer if we consider the machine
states explicitly. Suppose we have a stateσ0; a continuationθ would mean that the final

140 STRACHEY AND WADSWORTH

state of the machine at the end of the program would be

σ ′ = θ(σ0).

If we now want to find the effect of performing the commandγ with θ as its continuation,
we should use the state transformationθ ′ = P[[γ]](ρ)(θ) so that the final state would be:

σ ′1 = P[[γ]](ρ)(θ)(σ0).

This sort of expression may be unfamiliar to some readers as it involves the use ofhigher
order functions—that is, functions whose arguments and results are also functions. When
we use functions of this kind we often userepeated application(as in the last equation) with
the convention that application associates to the left. Thus, if we were to insert all brackets,
we should write

σ ′1 = (((P[[γ]])(ρ))(θ))(σ0).

We nearly always leave out the association brackets and sometimes also the brackets round
an argument which are normally used to indicate functional application. In this minimally
bracketed form, we should write

σ ′1 = P[[γ]]ρθσ0

(note that we shall always retain the text brackets [[]]).
For the purposes of this paper, any command can be considered to be a complete program

and we take the meaning of a program to be the state transformation it produces when its
constituent commandγ is executed in the standard environmentρ0. This is given by

P[[γ]]ρ0θ0

whereθ0 is the identity function on states.
This approach to the meaning of a whole program is deliberately rather simple-minded.

The reader will notice that both the initial environmentρ0 and the initial continuationθ0 are
generally provided by the operating system. As we are only considering single programs
we have used the identity function as the continuation since “no more” remains to be done
when the program is completed.1

We are now in a position to consider the semantic equations for some clauses of the
syntax. Taking sequencing first, we are looking for the value ofP[[γ0;γ1]]ρθ . The intention
is that we carry outγ0 (in the environmentρ), and follow it with the continuation which
arises from carrying outγ1 (in ρ) with the continuationθ . In symbols this is

P[[γ0;γ1]]ρθσ =P[[γ0]]ρ {P[[γ1]]ρθ}σ

(Here, and in future, we use braces{ } as an aid to the eye to delimit continuations.)
P[[γ1]]ρθ is the state transformation obtained by carrying outγ1 (in ρ) beforeθ and this
expression is therefore the correct continuation to provide forγ0.

CONTINUATIONS 141

We can now see in outline how to deal with labels and jumps. The value of a label
will be the state transformation from the labelled-point to the end of the program. (The
reader can notice clearly here the development of continuations from the “tail functions”
of Mazurkiewicz [5].) The semantic equation forP[[goto ε]]ρθ will simply ignoreθ and
use as continuation the value ofε. Before we can describe this in detail, however, we need
to look into the use of continuations with expressions.

4.3. Expressions

In contrast to a command, whose execution yields only a machine state, an expression when
successfully evaluated yields both a (possibly altered) machine state and a result. Exactly
what is to be done with the result, however, is not determined by the expression itself, but
by its context. It is appropriate to take account of this by using a new type of continuations
known as anexpression continuation. This has as its arguments the expression result and
a state and produces in turn a final state. For technical reasons it is convenient to supply
these arguments singly so that the functional nature of an expression continuation is

K = [E→ [S→ S]]

whereE is the domain of expression results. In the language we are considering here,E
is the same asD (the domain of values which can be denoted by identifiers) but this is not
a necessary feature of all languages (see ref. [14] for a discussion of the domain structure
of programming languages). We shall useδ for the typical element of bothE andD and
κ ∈ K for an individual expression continuation. The semantic function for an expression
will be denoted byE and has the functionality

E : [Exp→ [Env→ [K → [S→ S]]]] .

The semantic equations for some expression clauses are now obvious. Thus

E [[true]]ρκσ = κ(tt)σ
E [[false]]ρκσ = κ(ff)σ

wherett and ff are the truth vales corresponding to the program texttrue and false (we
use different symbols as the two domains are quite distinct). The clause for an identifier is
almost equally simple:

E [[ξ]]ρκσ = κ(ρ[[ξ]])σ

which says that we find the value denoted byξ in the environmentρ and pass this as an
argument to the continuationκ.

The fact that the same storeσ occurs on both sides of these equations indicates that it
has not been altered by the evaluation of the expression—in other words thattrue, false
and identifiersξ can be evaluated without side-effects. This is not true of expressions in
general (and ofvalof expressions in particular). If the evaluation ofε in the environment

142 STRACHEY AND WADSWORTH

ρ and with a machine stateσ terminates normally producing a resultδ and an altered state
σ ′, we should get

E [[ε]]ρκσ = κ(δ)(σ ′).

The clause for the conditional expressionε0→ ε1, ε2 needs a little more discussion. We
start by evaluatingε0 in the environmentρ, but what continuation should we give it? If the
value produced byε0 is tt the continuation should be to evaluateε1 (also inρ) and pass its
value toκ; if the value produced byε0 is ff thenε2 should be chosen in place ofε1. This
yields the following clause:

E [[ε0→ ε1, ε2]]ρκσ = E [[ε0]]ρ {Cond(E [[ε1]]ρκ, E [[ε2]]ρκ)} σ

whereCondis a general function of type

[V ×V]→ [T→V]

(whereV can be any suitable domain) such that ifp,q ∈ V

Cond(p,q)(tt) = p

Cond(p,q)(ff) = q.

In our particular caseV isC and, in accordance with our usual convention, we have enclosed
the expression continuation in braces.

In order to verify that this is correct, let us suppose that the evaluation ofε in the
environmentρ and with the machine stateσ yield the resultδ (which is tt or ff) and an
altered stateσ ′. Then, as above,

E [[ε0→ ε1, ε2]]ρκσ = {Cond(E [[ε1]]ρκ, E [[ε2]]ρκ)}(δ)(σ ′)
=
{E [[ε1]]ρκσ ′ if δ = tt

E [[ε2]]ρκσ ′ if δ = ff

which gives the desired effect of choosing the correct expression (fromε1 and ε2) and
compounding the side effect of evaluatingε0.

5. The remaining commands

5.1. Jumps and labels

We can now discuss the semantic equation for a simple jump:

P[[gotoξ]]ρθσ = (ρ[[ξ]] |C)σ

The expressionρ[[ξ]] | C is the element ofD denoted by the identifierξ (which should be
a label). This element is thenprojectedinto C (which implies that the domainC is a part

CONTINUATIONS 143

of D); this projection merely performs a sort of dynamic type checking. The result is then
a state transformation which is applied toσ whatever the original continuationθ .

We can deal with acomputed jump(i.e. with a general expression in place of a label
identifier) almost equally easily. The equation is

P[[goto ε]]ρθ = E [[ε]]ρ{Jump}
where Jump∈ K = E→ C

Jump(δ) = δ |C.

Thus, if the value ofε in the environmentρ and with a machine stateσ is a continuation
θ ′ and if the evaluation alters the state toσ ′, the effect ofgoto ε will be

P[[goto ε]]ρθσ = Jump(θ ′)(σ ′)
= θ ′(σ ′)

whatever the original continuationθ .
This clearly has the right effect and manages to lose the continuation completely. Thus

the command sequencegoto ε;γ with a continuationθ will give

P[[goto ε;γ]]ρθσ = P[[goto ε]]ρ{P[[γ]]ρθ}σ
= E [[ε]]ρ{Jump}σ
= P[[goto ε]]ρθσ

for all ρ, θ andσ . This means that the two commands are strictly equivalent, which we can
write, using the programming language itself, as

pgoto ε;γ q ≡ pgoto εq

(The symbolsp q are a form of quotation marks separating the programming language text
from the meta-symbol≡.)

If our jumps are to be of any use, we must have some way of introducing labels into the
language. This is the purpose of the next clause whose semantic equation is rather more
elaborate:

P[[§ γ0;ξ1:γ1; . . . ξn−1:γn−1 §|]]ρθσ = θ0σ

where θ0 = P[[γ0]]ρ ′θ1

θ1 = P[[γ1]]ρ ′θ2

...

θn−1 = P[[γn−1]]ρ ′θ
and ρ ′ = ρ[θ1, . . . , θn−1/ξ1, . . . , ξn−1].

The meaning of this is that we first set up an environmentρ ′ which is the same asρ
except that the identifiersξ1, . . . , ξn−1 here denoteθ1, . . . , θn−1 (thus masking any former

144 STRACHEY AND WADSWORTH

denotation they may have had). We then set up the equations given forθ0, θ1, . . . , θn−1

which make use of the new environmentρ ′. (Note that the continuation used in the last
equation is the originalθ , since the continuation appropriate to the last command in a block
is just the continuation of the whole block.) The state transformation for the block (with
continuationθ) is thenθ0.

It should be clear that theγi may involve any of theξi , so that this set of equations is non-
trivial: any θi may involve any or all of theθi (including itself) through the corresponding
ξi andρ ′.

The solution of this set of equations may seem a formidable problem. It is, of course,
the most complicated (but also the most interesting) part of semantic theory. Fortunately
the mathematical theory which underlies this method [11, 12, 13] not only guarantees the
existence of a solution to equations of this sort, but also gives a general method for finding
it. This involves using theminimal fixed point operatorwhich we write asY; the theory
proves the existence ofY and gives a formula for it.

5.2. While-loop

The only explicit use we shall make ofY is in the equation for awhile-loop.

P[[while ε do γ]]ρθ =Y(λθ ′ · E [[ε]]ρ{CondP[[γ]]ρθ ′, θ)})

To see how this works, let us consider the functionH : C→ C such that

H(θ ′) = E [[ε]]ρ{Cond(P[[γ]]ρθ ′, θ)}.

For any specificθ ′, H(θ ′) is a state transformation; comparison with the equation for a
conditional expression shows that the meaning ofH(θ ′)σ is:

Evaluateε in environmentρ with stateσ ; let the result beδ with an altered stateσ ′.
If δ= tt perform the commandγ in the environmentρ with a continuationθ ′ and an initial

stateσ ′.
If δ = ff , perform only the continuationθ on the stateσ ′.

If we now identifyθ ′ with H(θ ′)we can see that the result will be a satisfactory interpre-
tation of thewhile-loop. The argument ofY in the semantic equation is just the function
H written in theλ-notation andY(H) gives us the minimal fixed point ofH—i.e. the
minimal solution of the equationθ ′ = H(θ ′). (In this context the minimal solution is the
solution which is defined over the smallest possible domain of arguments. This turns out
to be exactly what we need for our semantic equations.)

Let us introduce the commanddummy, which has no effect and hence has the semantic
equation

P[[dummy]]ρθ = θ

CONTINUATIONS 145

and the conditional commandε → γ0, γ1, which, by analogy with the conditional expres-
sion has the equation

P[[ε→ γ0, γ1]]ρθ = E [[ε]]{Cond(P[[γ0]]ρθ,P[[γ1]]ρθ)}.
We can now write a block in the programming language which should be equivalent to the
loopwhile ε do γ . One form of this is

§ dummy; ξ :ε→(γ ;goto ξ), dummy §|,
where the label identifierξ does not occur inε or in γ . It is a relatively simple matter to
prove this equivalence. We have:

P[[§ dummy; ξ :ε→ (γ ;goto ξ), dummy §|]]ρθ = θ0

where θ0=P[[dummy]]ρ ′θ1

θ1=P[[ε→ (γ ;goto ξ), dummy]]ρ ′θ
and ρ ′ = ρ[θ/ξ].

Calculating, we get

θ0 = θ1

θ1 = E [[ε]]ρ ′{Cond(P[[γ ;goto ξ]]ρ ′θ,P[[dummy]]ρ ′θ)}
= E [[ε]]ρ ′{Cond(P[[γ]]ρ ′{P[[goto ξ]]ρ ′θ}, θ)}
= E [[ε]]ρ ′{Cond(P[[γ]]ρ ′{E [[ξ]]ρ ′{Jump}}, θ)}
= E [[ε]]ρ ′{Cond(P[[γ]]ρ ′θ1, θ)}

where we can writeρ in place ofρ ′ in the last equation becauseξ does not occur inε or γ .
Remembering our definition ofH above we get

θ0 = θ1 = H(θ1).

Thusθ1 is also a fixed point ofH . A more formal statement of the semantic equations
for a block would ensure thatθ1 is the minimal fixed point ofH and therefore identical to
Y(H), the semantic expression for thewhile-loop.

Similar methods can be used to prove several general equivalences between programs
such as:

pwhile ε do γ q ≡ pε→ (γ ;while ε do γ), dummyq

pε0→ goto ε1, goto ε2q ≡ pgoto ε0 → ε1, ε2q

pε→ γ0, γ1q ≡ p§ goto ε0→ ξ0, ξ1

ξ0 : γ0;goto ξ2;

ξ1 : γ1;goto ξ2;

ξ2 : dummy §q.

The last is subject to identifiersξ0, ξ1 andξ2 not occurring inε, γ0 or γ1.

146 STRACHEY AND WADSWORTH

5.3. Valof and resultis

In order to deal with avalof expression we need to set aside temporarily the expres-
sion continuation and provide some other, command-type continuation for the body. Since
resultis commands are interpreted as being bound to the smallest textually surrounding
valof block (in the same way that ordinary identifiers are bound to their denotations), it is
appropriate to save the expression continuation in the environment by creating a special
elementres to denote it. To do this we extend the environment domain to consist of pairs, a
mapping fromId to D as before, together with an expression continuation associated with
res:

ρ ∈ Env= [[Id→ D]× K].

By a convenient abuse of notation, we shall continue to writeρ[[ξ]] andρ[δ/ξ] to refer to
the [Id→ D] component ofρ, and we shall writeρ[[res]] for the second component ofρ,
andρ[κ/res] for the environmentρ ′ which is the same asρ except that theK -component
of ρ ′ is κ.2

The semantic equation for avalof expression can now be given.

E [[valof γ]]ρκσ =P[[γ]](ρ[κ/res]){Fail}

We expectγ , the body of thevalof expression, to be terminated by aresultis command.
If, however, the program is wrongly constructed and the end of the body,γ , is reached by
normal sequencing, we need to signal an error. This is done by providing special command
continuationFail which will only be used if execution of the body is completed without a
resultis-command being obeyed.

When aresultis ε command is encountered we whish to reinstate the original expression
continuation (which is now the environment) and provide it with the value ofε as an
argument. So we get:

P[[resultis ε]]ρθ = E [[ε]]ρ{ρ[[res]]}.

In this equationρ[[res]] is the originalκ which was inserted byρ[κ/res] in the equation for
valof.

We note in passing that escapes such as thebreak-command, which causes an immediate
exit from the smallest enclosing loop, can be treated in an analogous fashion.

6. Discussion

We have now completed the explication of the semantics of our language. The results
are collected together on two pages as Appendix A.2. One point which was left unsettled
has now been resolved—the nature of the domainD. It must containC (for label valued
variables), and, in order to give some point to the language,T (although the language makes
no provisions for creating identifiers denoting truth values).

CONTINUATIONS 147

Appendix A.2 also gives the functionality of the semantic functions, the syntactic cate-
gories (or domains) and the clauses of the idealised syntax. It thus effectively defines the
complete language, apart from the details of the concrete syntax.

The discussion on the semantic equations in this paper has been deliberately informal.
The whole method of giving the mathematical semantics is generally unfamiliar and, as it
involves a rather large amount of mathematical notation, it takes some time to get used to.
Again, familiarity is the cure: those of us who have worked with continuations for some
time have soon learned to think of them as natural and in fact often simpler than the earlier
methods.

One very important consequence of the informality of our discussion is that no proper
consideration has been given to questions of termination. If a continuation is the state
transformation to the end of the program, how do we deal with programs which fail to
terminate? The short answer to this is that such a continuation is wholly undefined and so
has the value⊥ (bottom). All our domains are constructed in such a way that there is a partial
ordering on them which can be thought of as being based on the amount of information
contained in an element. The element with no information in each domain is denoted by
the symbol⊥, with its domain indicated by a subscript, though this is often omitted. An
unending loop will have a continuation value of⊥C and it will be this value which is given
by the minimal fixed-point operatorY. (The treatment of non-terminating programs raises
several questions which we do not attempt to deal with here. Reynolds [9, 10] has discussed
some of the factors involved.)

The method of continuations introduced here can be extended to the whole of a program-
ming language with no great difficulty. In particular, it can be used with block structure,
abstraction and application (definition and use of procedures) both recursive and non-
recursive. It will also handle a jump out of recursively nested calls of recursively defined
procedures (if the language allows it). Even more extreme jumps are possible. In a language
such as PAL [1] which permits assignments it may be possible to jump out of an expression
and then later jump back into it again and resume the process of evaluation. Continuations
are sufficiently powerful to deal with such a situation. (This could not be taken to imply
approval of jumps back into expressions as a language design feature—but if a language
can specify something, however odd, the method used to give its formal semantics must be
powerful enough to describe it.)

In contrast to [13] our main semantic functions now take three arguments: an environ-
ment, a continuation and a store. (For some languages further arguments are needed; in
Algol 60 and Algol 68, for instance, the coercion context for expressions is supplied to
their semantic functions [6, 8].) Together these arguments may be regarded as thesemantic
contextin which each part of the program must be interpreted before its contribution to the
meaning of the whole program can be determined. The environment and the store provide
all necessary information about the history of the computation preceeding the part under
consideration; the continuation indicates how the computation will proceed to the end of
the program unless the current control causes a jump. Notice, however, that the seman-
tic context does not implicitly contain any of the “house-keeping” information introduced
when carrying out the computation on a machine. In Section 4 of our exposition, there is no
mention, for example, of how implementations keep track of the current execution point or

148 STRACHEY AND WADSWORTH

catalogue the partial results of an expression evaluation. Language descriptions which keep
the details of run-time organization below the surface reveal the semantics more clearly and
allow an interpreter to choose strategies suited to his machine.

This paper is part of the outcome of a collaboration with Dana Scott started in the autumn
of 1969. We have since been joined by the staff and the students at the Programming
Research Group. The aim has been to lay a firm foundation for a method of specifying the
mathematical semantics of programming languages which is sufficiently general to deal with
many different ones. The need to describe already existing languages has acted as a useful
corrective to the mathematician’s tendency to simplify and generalise. Actual languages
are not only peppered with gritty little problems which greatly lengthen and complicate
their formal description, but they also contain genuine difficulties, such as error exits from
functions. These are often overlooked because their importance is not appreciated.

One distinction we have striven to maintain throughout our work is that between
semantics—given a program, what function does it compute—and implementation—how
is a machine to be organised to execute the actions specified by programs? This distinction
takes many forms; it is found, for example, in the need to distinguish between a data object
and its machine representation, or, perhaps, even more fundamentally, between functions
and algorithms. The role of mathematical semantics is to give a precise, unambiguous
definition ofwhatprograms mean, sufficient to determine their outcome, while remaining
uncommitted as to the details ofhow this outcome is to be achieved on a (real or abstract)
computing machine. In this way we hope to focus on the “essential meanings” of language
constructs and thus explain the equivalence of programs and prove correctness of their
implementations. Some theories about implementations have already been established [6].
The proofs of most involve complex structural inductions on the clauses of the semantic
functions to verify that certain properties of the semantic context are invariant under all
computations; for a large language this can be a tedious and error-prone activity.

Much work remains to be done, but we have now reached the stage where the methods are
sufficient for conventional programming languages. Full descriptions of PAL, Algol 68 and
Algol 60 have been prepared. The last of these will be published shortly [8]; considerations
of time may rule out publication of the other two. Work continues and from time to time
we hope to publish small papers such as this giving progress reports. The time for a unified
presentation is still some way off.

Appendix A.1: Mathematical semantics

The method aims to produce amathematicalrather thanoperationalsemantics by specifying
the equivalence between constructs in the programming language and certain mathematical
entities rather than discussing in any way how the program is to be implemented. Thus
the imperative and dynamic features of the language are interpreted as “change of state”
functions whose domain and range are both machine states.

The means adopted to display this equivalence is to define a number ofsemantic functions
whose domain lie in the programming language text and whose ranges are the machine states

CONTINUATIONS 149

and various higher order functional objects associated with them. (These include, of course,
the data types on which the program is operating.)

In order to specify these semantic functions it is necessary to examine the syntax of
the programming language, but only the barest minimum of attention is paid to it. Un-
like some other approaches, we are not concerned with symbol manipulation starting from
the original text, but with a far more abstract view of the syntax. The syntax is given in
an abbreviated version of BNF, but the number of clauses is reduced to a minimum; all
questions of parsing and some of admissibility are left out of consideration. In any actual
implementation of a real language, there would need to be a further stage of specifying a
concrete, unambiguous syntax which incorporated the syntactic restrictions placed on the
language.

The semantic functions are then defined by a set of mutually recursive equations, one
for each clause in the idealised syntax. The semantic functions will occur on both sides of
these equations, but those occurring on the right hand side will have arguments which are
component parts of the clause which is the left hand argument. This method of definition
allows us to concentrate our attention on the semantic structure of the language—of how
the value (= meaning) of a clause is built up from the values of its components.

One particular semantic function plays an important part throughout. This is theenviron-
ment(for which we reserve the letterρ) which gives the values denoted by the identifiers in
the language. The environment can only be altered by a variable binding operation (such
as a definition or procedure call). Other commands may alter the machine state (for which
we use the letterσ) but they will leave the environment unaltered. Another important dif-
ference betweenρ andσ is that changes toσ are irreversible,—i.e. only oneσ at the time
can be kept in the machine. New environments on the other hand are usually thought of as
being modifications of an old one, and it is normal to keep them both. Thus on exit from a
block the old environment (but not the oldσ) is restored.

It is important to keep the notation used under very strict control. We have found that a
careful choice of letters, type faces and brackets aids the eye and makes the necessarily rather
long formulae easier to read. In particular, we use upper case script letters for semantic
functions (with the exception ofρ), lower case Greek letters for variables whose nature is
determined by the letter (e.g.ε for expressions,θ for state transformations, etc.) italic type
is used for basic functions in the value domains (e.g.Conds, Y). Programming language
text is enclosed in double brackets and its reserved words are printed in bold face (e.g.
while, goto).

Appendix A.2: A Small “continuation” language

Syntactic categories

ξ ∈ Id Usual Identifiers
γ ∈ Cmd Commands
ε ∈ Exp Expressions
φ ∈ Fn Some Primitive Commands

150 STRACHEY AND WADSWORTH

Syntax

γ ::= φ | dummy |
γ0;γ1 | ε→ γ0, γ1 | while ε do γ |
goto ε | § γ0;ξ1 : γ1; . . . ξn−1 : γn−1§| |
resultis ε

ε ::= ξ | true | false |
ε0→ ε1ε2 | valof γ

Value domains

T Truth Values

S Machine States (Stores)

θ ∈ C = [S→ S] Command Continuations

δ ∈ D = [T +C] Denotations

δ ∈ E = [T +C] Expression Results

κ ∈ K = [D→C] Expression Continuations

Semantic functions

ρ : [[Id→ D] × K] = Env Environments

P : [Cmd→ [Env→ [C→C]]]

E : [Exp→ [Env→ [K→C]]]

Semantic equations

C1. P[[φ]]ρ= (Some given function [C→C] associated withφ)

C2. P[[dummy]]ρθ = θ
C3. P[[γ0;γ1]]ρθ =P[[γ0]]ρ {P[[γ1]]ρθ}
C4. P[[ε→ γ0, γ1]]ρθ = E [[ε]]{Cond(P[[γ0]]ρθ,P[[γ1]]ρθ)}
C5. P[[while ε do γ]]ρθ =Y(λθ ′·E [[ε]]ρ{Cond(P[[γ]]ρθ ′, θ)})
C6. P[[goto ε]]ρθ = E [[ε]]ρ {Jump}

whereJump(δ)= δ |C
C7. P[[§ γ0;ξ1:γ1; . . . ξn−1:γn−1 §|]]ρθ = θ0

where θ0 = P[[γ0]]ρ ′θ1

θ1 = P[[γ1]]ρ ′θ2

...

θn−1 = P[[γn−1]]ρ ′θ
andρ ′ = ρ[θ1, . . . , θn−1/ξ1, . . . , ξn−1]

CONTINUATIONS 151

C8. P[[resultis ε]]ρθ = E [[ε]]ρ {ρ[[res]]}
E1. E [[ξ]]ρκ = κ(ρ[[ξ]])

E2. E [[true]]ρκ = κ(tt)
E3. E [[false]]ρκ = κ(ff)
E4. E [[ε0→ ε1, ε2]]ρκ = E [[ε0]]ρ{Cond(E [[ε1]]ρκ, E [[ε2]]ρκ)}
E5. E [[valof γ]]ρκ =P[[γ]](ρ[κ/res]) {Fail}

Notes

1. The reader may ask if it is any more justifiable to take a single program in isolation than it is to take a single
command. The answer, of course, is that it is not, and that in the same way as command continuations are needed
to explain jumps inside programs, further hierarchical levels of continuations, such as process continuations,
job continuations and operating system continuations, will be needed to give the semantics of the operating
system. The outer-most level (or possibly levels) are not inside the machine at all and are implemented by
operator intervention.

We do not discuss the use of continuations in the semantics of operating systems any further in this paper
as to do so would require a fuller understanding of the differences between operating systems and programs
that is yet at our disposal. It would also make the paper much too long. . .

2. An alternative approach would be to includeres in Id as a special identifier, not accessible to the programmer,
and consequently to include its rangeK in the domainD so thatEnvremains [Id→ D]. In the language consid-
ered here, however, no mechanism is provided for binding ordinary identifiers to expression continuations. To
include K in D would therefore not be compatible with [13], whereD is reserved for the domain of values
denotable by program identifiers. Richer languages might, of course, include further constructs which provide
a suitable binding mechanism, e.g. Landin’sJ-operator [4].

References

1. Evans, A., Jr. PAL—a language for teaching programming linguistics. InProc. 23rd ACM National Conference,
Brandon Systems, Princeton, N.J., 1968, pp. 395–403.

2. Fischer, M.J. Lambda-calculus schemata.LISP and Symbolic Computation6(3/4) (1993) 259–288. An earlier
version appeared in an ACM Conference on Proving Assertions about Programs, SIGPLAN Notices, Vol. 7,
No. 1, January 1972.

3. Landin, P.J. The mechanical evaluation of expressions.Computer Journal6(4) (1964) 308–320.
4. Landin, P.J. The next 700 programming languages.Communications of the ACM9(3) (1966) 157–164.
5. Mazurkiewicz, A. Proving algorithms by tail functions.Information and Control18(3) (1971) 220–226.
6. Milne, R.E. The formal semantics of computer languages and their implementations. Ph.D. Thesis, Cambridge

University, 1974. Also as Technical Monograph PRG-13, Oxford University Computing Laboratory, Program-
ming Research Group.

7. Morris, F.L. The next 700 formal language descriptions.LISP and Symbolic Computation6(3/4) (1993)
249–258.

8. Mosses, P.D. The mathematical semantics of Algol 60. Technical Monograph PRG-12, Oxford University
Computing Laboratory, Programming Research Group, 1974.

9. Reynolds, J.C. Definitional interpreters for higher-order programming languages. InProceedings of 25th ACM
National Conference, Boston, 1972.

10. Reynolds, J.C. On the interpretation of Scott’s domains.Informatica Teorica, Vol. 15 of Symposia Mathe-
matica, Instituto Nazionale di Alta Matematica Roma, 1975, pp. 123–135. Distributed by Academic Press,
London.

152 STRACHEY AND WADSWORTH

11. Scott, D. Continuous lattices. InProc. of the 1971 Dalhousie Conference. Lecture Notes in Mathematics,
Vol. 274, pp. 97–136, Springer-Verlag, 1972. Also as Technical Monograph PRG-7, Oxford University
Computing Laboratory, Programming Research Group.

12. Scott, D. Outline of a mathematical theory of computation. InProceedings of the Fourth Annual Princeton
Conference on Information Sciences and Systems, 1970, pp. 169–176. Also as Technical Monograph PRG-2,
Oxford University Computing Laboratory, Programming Research Group.

13. Scott, D. and Strachey, C. Toward a mathematical semantics for computer languages. InProc. of the Symposium
on Computers and Automata, Polytechnic Institute of Brooklyn, 1971. Also as Technical Monograph PRG-6,
Oxford University Computing Laboratory, Programming Research Group.

14. Strachey, C. Varieties of programming language. InProc. of the International Computing Symposium, Cini
Foundation, 1972, pp. 222–233. Also as Technical Monograph PRG-10, Oxford University Computing
Laboratory, Programming Research Group.

