INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION

FORMAL SYSTEMS: COMBINATORY LOGIC
AND A-CALCULUS

Andrew R. Plummer

Department of Linguistics
The Ohio State University

30 Sept., 2009

OUTLINE

© INTRODUCTION

© APPLICATIVE SYSTEMS

e USEFUL INFORMATION

«O)>» «F»r «=>»

<

ae

INTRODUCTION

COMBINATORY LOGIC

We present the foundations of Combinatory Logic and the
A-calculus. We mean to precisely demonstrate their similarities
and differences.
CURRY AND FEYS (KOREAN FACE)
The material discussed is drawn from:

e Combinatory Logic Vol. 1, (1958) Curry and Feys.

e Lambda-Calculus and Combinators, (2008) Hindley and
Seldin.

INTRODUCTION

FORMAL SYSTEMS

We begin with some definitions.

FORMAL SYSTEMS
A formal system is composed of:
o A set of terms;
o A set of statements about terms;
o A set of statements, which are true, called theorems.

INTRODUCTION

FORMAL SYSTEMS

TERMS
e We are given a set of atomic terms, which are unanalyzed
primitives.
e We are also given a set of operations, each of which is a
mode for combining a finite sequence of terms to form a
new term.

e Finally, we are given a set of term formation rules detailing
how to use the operations to form terms.

INTRODUCTION

FORMAL SYSTEMS

STATEMENTS

e We are given a set of predicates, each of which is a mode
for forming a statement from a finite sequence of terms.

e We are given a set of statement formation rules detailing
how to use the predicates to form statements.

INTRODUCTION

FORMAL SYSTEMS

THEOREMS

e We are given a set of axioms, each of which is a statement
that is unconditionally true (and thus a theorem).

e We are given a set of deductive rules detailing how to use
the axioms to derive other theorems.

INTRODUCTION

ELEMENTARY THEORY OF NUMERALS

We need to specify: a set of atomic terms, a set of operations,
a set of term formation rules.
TERMS
e Let {0} be the set of atomic terms.
e Let {S} be the set of operations.
e Let {Suc} be the set of term formation rules where:
Suc: If x is a term, then Sx is also a term.

INTRODUCTION

ELEMENTARY THEORY OF NUMERALS

We need to specify a set of predicates, and a set of statement
formation rules.
STATEMENTS
e Let {=} be the set of binary predicates.
e Let {EQ} be the set statement formation rules where:
EQ: If x and y are terms, then x = y is a statement.

INTRODUCTION

ELEMENTARY THEORY OF NUMERALS

We need to specify a set of axioms, and a set of deductive
rules.
THEOREMS
e Let {0 =0} be the set of axioms.
e Let {EQOFSuC} be the set of deductive rules where:
EQOFSuc: If x = y, then Sx = Sy.

INTRODUCTION

APPLICATIVE SYSTEMS

USEFUL INFORMATION

ELEMENTARY THEORY OF NUMERALS

DERIVATIONS OF TERMS

W Suc

S50
$SS0 SY°

INTRODUCTION

APPLICATIVE SYSTEMS

USEFUL INFORMATION

ELEMENTARY THEORY OF NUMERALS

DERIVATIONS OF STATEMENTS

S0—o EQ

INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION

ELEMENTARY THEORY OF NUMERALS

DERIVATIONS OF THEOREMS

0=0

ﬂ EQOFSuUC

0=0
S0 = SO
SS0 = SS0

EQOFSucC
EQOFSuc

OUTLINE

@ INTRODUCTION

© APPLICATIVE SYSTEMS

e USEFUL INFORMATION

«O>» «Fr «E»r <

it
v

ae

APPLICATIVE SYSTEMS

APPLICATIVE SYSTEMS

Let F be a formal system.
Let 7 be the set of terms of F.
Let O = {fy,f,..., Iy} be the set of operations of F.

SCHONFINKEL’S REDUCTION ALGORITHM
e Given n-ary f; € O, add a fresh Fjto 7.

e Add a new binary operation app (called application) to O,
and denote it by juxtaposition, which is left associative.

e Define the term f(t,...,ty) as Fit; - - - ty.
e Remove f; from O.

e Return a formal system]—'Z{pp just like F, only less f;, and
with app.

APPLICATIVE SYSTEMS

APPLICATIVE SYSTEMS

EXAMPLE
e Suppose a formal system has the binary operation + and
the term formation rule

X y
X+y
e We adjoin the fresh add to the set of terms, and define
X+ yasaddxy (asseenin haskell!).

PLus

APPLICATIVE SYSTEMS

APPLICATIVE SYSTEMS

QUASI-APPLICATIVE SYSTEMS
A quasi-applicative system is a formal system whose set of
operations contains application.

By iteration of Schdnfinkel's Reduction Algorithm we can
remove as many operations (other than app) as we want.

APPLICATIVE SYSTEMS

An applicative system is a formal system whose only operation
is application.

We can reduce any formal system to an applicative system.

APPLICATIVE SYSTEMS

FUNCTIONAL ABSTRACTION

FUNCTIONAL ABSTRACTION

Functional Abstraction (or simply abstraction) is a binary
operation, designated by a prefixed ‘\’, with the following term
formation rule:

ABS: If x is a variable! and M a term, then \xM is also a term.

A-APPLICATIVE SYSTEMS

A \-applicative system is a formal system whose only
operations are application and abstraction.

"We will not formally define variables. We simply assume that they are particular

members of the set of atomic terms.

APPLICATIVE SYSTEMS

COMBINATIONS

COMBINATIONS

A combination is a term formed by utilizing application zero or
more times.

COMBINATORIAL COMPLETENESS

A formal system is combinatorially complete if any function we
can define intuitively by means of a variable can be represented
by a combination yielded by the system.

APPLICATIVE SYSTEMS

COMBINATORS

COMBINATORS
A combinator is a kind of combination. We want to define them
such that they provide combinatorial completeness.

CROSSROADS
We have two viable options:

e Define combinators via abstraction. This leads to the
formulation of the A-calculus as a special class of
A-applicative systems.

e Postulate certain combinators as atomic terms, and define
all others using them. This leads to the theory of
combinators as a special class of applicative systems.

APPLICATIVE SYSTEMS

THEORY OF COMBINATORS

Given that we are already familiar with the A-calculus, we will
develop the theory of combinators as applicative systems.

After developing the applicative theory, we will demonstrate a
transform between applicative systems and A-applicative
systems.

APPLICATIVE SYSTEMS

THEORY OF COMBINATORS

We need to specify: a set of atomic terms, a set of operations,
a set of term formation rules.

TERMS
o Let{S,K, |, x1,x2,...,f1, fo,...} be the set of atomic terms.
o Let {app} be the set of operations.
e Let {APP} be the set of term formation rules where:
APP: If x and y are terms, then xy is also a term.

A combinator is any term built from S, K, or | by zero or more
uses of app; e.g. SKK.

APPLICATIVE SYSTEMS

THEORY OF COMBINATORS

We need to specify a set of predicates, and a set of statement
formation rules.

STATEMENTS
e Let {>} be the set of binary predicates.
e Let {RED} be the set statement formation rules where:
RED: If x and y are terms, then x > y is a statement.

> is called reduction, and will constitute a monotonic partial
order on terms.

APPLICATIVE SYSTEMS

THEORY OF COMBINATORS

We need to specify a set of axioms, and a set of deductive
rules.

AXIOMS

Let x, y, z be terms. The set of axioms contains the following
statement schemas:

o Ix=x
o Kxy =x
e Sxyz = xz(yz)

APPLICATIVE SYSTEMS

THEORY OF COMBINATORS

Let x, y, z be terms.

DEDUCTIVE RULES
Let {REF, TRANS, RMON, LMON} be the set of deductive rules
where:

e REF: x> x,

@ TRANS: If x>y and y > z, them x > Z,
e RMON: If x > y them zx > zy,

e LMON: If x > y them xz > yz.

We can include a symmetry rule SYm to make > into a
monotonic equivalence relation =.

APPLICATIVE SYSTEMS

EXAMPLE

DERIVATION OF (((S(KS)K)G)F)X > G(FX)

((S(KS)K)g)f)x &> ((((KS)g)(Kg))f)x (((KS)g)(Kg)f)x > ((S(Kg))f)x

(1) (S(KS)K)g))x > ((S(Kg))f)x TRANS
(SKg)x > (K() (K> olb)
2) (S(Kg)hx > g(ix)
(1) ((SKS)K)g))x > (SKg)x (2) (S(Kg))x > g(fx)
TRANS

((S(KS)K)g))x 1> g(fx)

APPLICATIVE SYSTEMS

EXAMPLE

DERIVATION OF (((S(KS)K)G)F)X > G(FX)

(S(KS)K)ghx > ((KS)g)(Kg)f)x | (S(KS)K)g — ((KS)g)(Kg)
> ((S(Kg)f)x (KS)g — S
> ((Kg)h(fx) Reducing ((S(Kg))f)x
> g(fx) ((Kg)f) — g

We define the combinator B as S(KS)K. Assuming the f and g
are functions, it is easy to see that B is function composition.

APPLICATIVE SYSTEMS

COMBINATORIAL COMPLETENESS

We still need to show that the theory of combinators is
combinatorial complete.

We know that the A-calculus is combinatorially complete. Thus
it is enough to show that the theory of combinators is equivalent
to A-calculus.

That is, given any A\-term M, we show that S, K and | can be
composed to produce a combinator equivalent to M, and vice
versa.

APPLICATIVE SYSTEMS

COMBINATORS TO A\-CALCULUS

LET LCJ[:] BE THE FOLLOWING TRANSFORMATION
LC[x] = x (x a variable)

LC[l] = Ax.x

LCIK] = Ax.\y.x

LC[S] = MAx.\y.\z.(xz(yz))

LC[(M1 Mz)] = (LC[M;] LC[M])

APPLICATIVE SYSTEMS

A-CALCULUS TO COMBINATORS

LET CL[-] BE THE FOLLOWING TRANSFORMATION
e CL[x] = x (x a variable)
o CL[(M;Ms)] = (CL[M;] CL[Me])
e CL[Ax.M] = (K CL[M]) (if x is not free in M)
e CL[Ax.x] =1
e CL[Ax.Ay.M] = CL[Ax. CL[Ay.M]] (if x is free in M)
o CL[Ax.(M;M>)] = (S CL[Ax.M;] CL[Ax.Ms])

OUTLINE

@ INTRODUCTION
© APPLICATIVE SYSTEMS

. USEFUL INFORMATION

«O)>» «F»r «=>»

<

ae

USEFUL INFORMATION

NORMAL FORMS

COMBINATORY NORMAL FORM

Let x, y, z be terms. A term Ix, Kxy, or Sxyz is called a
combinatory redex. A combinatory normal form is a
combinatory term that contains no combinatory redexes.

(-NORMAL FORM

Let M and N be A-terms. A term (AXM)N is called a 3-redex. A
B-normal formis a A\-term that contains no g-redexes.

USEFUL INFORMATION

CHURCH-ROSSER

CHURCH-ROSSER THEOREM FOR >

Let x, y, t be combinatory terms. If t > x and t > y, then there
exists a combinatory term z such that x>z and y > z.

CHURCH-ROSSER THEOREM FOR [>°

Let M,N, T be M\-terms. If T >g Mand T >3 N, then there
exists a term P such that M >z Pand N> P.

2This is just S-reduction.

INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION

UNIQUENESS OF NORMAL FORMS

UNIQUENESS OF COMBINATORY NORMAL FORMS

A combinatory term can have at most one combinatory normal
form.

UNIQUENESS OF 3-NORMAL FORMS
A \-term can have at most one 3-normal form.

USEFUL INFORMATION

FIXED-POINT COMBINATOR

We briefly discuss the fixed-point combinator Y.

Let f be a term and consider the term Yf. Since this combinator
is to be thought of as implementing recursion, we need Yf to be
a term that has both f and Y in it somehow. A natural choice is

Yf = f(YF).

That is, we just evaluate f at Yf.

USEFUL INFORMATION

FIXED-POINT COMBINATOR

To justify our definition of Y, we consider its formulation in the

A-calculus, due to Curry.

Y = M.(Ax.f(xx))(Ax.f(xx))

YG =G(YG)

Yg = (M. (Ax.f(xx))(Ax.f(xx)))g
Yg = (Ax.g(xx))(Ax.g(xx))

Yg = (Ay-g(yy))(Ax.g(xx))

Yg = g((Ax.9(xx))(Ax.g(xx)))
Yg=g(Yg)

(B-reduction
a-conversion
(B-reduction

from second line

USEFUL INFORMATION

SK-BASIS FOR COMBINATORY LOGIC

Any combinator can be defined using only the combinators S
and K.

We can define | as SKK.

Similarly, we can define the fixed point combinator as

Y = SSK(S(K(SS(S(SSK))))K)

	Introduction
	Applicative systems
	Useful Information

