Coarticulation of /s/ with following or preceding stops in Greek consonant sequences

Asimina Syrika, Fangfang Li, Eun Jong Kong, Jan Edwards, Mary Beckman, & Ben Munson

[syrika@wisc.edu]

Introduction: The acoustic signal

Coarticulation in speech

- What is co-articulation?
 - An overlap in the articulation of sound gestures for consecutive segments of an utterance
- Why is it interesting?
 - Speech production: Describing coarticulation patterns across languages
 - Speech perception: Lack of invariance and the segmentation problem
 - Development of coarticulation in children and L2 learners
Coarticulation

- What we know
 - There are different types of coarticulation
 - Some coarticulation is physiological, and some is phonological (language-specific)
 - There is great variation in coarticulation

- What we don’t know
 - How to quantify coarticulation
 - How it develops in children and L2 learners
 - Little work on coarticulation in consonant clusters

Research Questions

- Examine coarticulation in consonant clusters
 - Are stop place cues present in the [s] in initial /s/-stop and stop-/s/ sequences in Greek?
 - Are these patterns similar to those that have been observed in English?
 - Do Greek children show the same patterns as the adults?
 - How can we quantify these dynamic features of fricative spectra?

Method: Participants

- Ten children at each of the following ages (2-, 3-, 4-, and 5-years), and 10 young adults (20-35 years) from Thessaloniki
- All participants passed a hearing screening, and had normal speech/language development
- All participants were part of a larger study investigating phonological development across languages

 http://www.ling.ohio-state.edu/~edwards/
Method: Stimuli

- Target (/sp/, /st/, /sk/, /ps/, /ts/, /ks/) placed in word-initial position in:
 - Two or three-syllable words with word-initial stress
 - Familiar to the children
 - Pictureable
- Each target paired with all possible vowel combinations of /i, e, a, o, u/.

Examples of stimuli

Method: Procedure

- A picture and an audio prompt were presented simultaneously
- Participants were instructed to repeat the word as they heard it
- Productions were digitally recorded
Method

- Transcription analysis
 - Native-speaker transcription using Praat waveform editor
 - Initial consonant sequence was labeled
 - Correct
 - Incorrect
 - If incorrect, phonetic transcription of perceived error
 - Only correct productions analyzed in current study

Method: Acoustic analysis

- Series of centroids from FFT spectra using 10 ms overlapping windows
- Scaled analysis windows using SS-ANOVA (e.g., Davidson, 2007)
Results: Adults

Scaled frames of analysis windows

Results: 5-year-olds

Scaled frames of analysis windows

Results: 3-year-olds

Scaled frames of analysis windows
Results: 2-year-olds

Centroid (Hz)

Scaled frames of analysis windows

Results: Summary

- There was a significant effect of place:
 - Lower centroids for bilabials as opposed to dentals.
 - Centroids for /sp/ and /st/ differed at the end of the trajectory.
 - Centroids for /ps/ and /ts/ differed at the beginning of the trajectory.
- Developmental patterns:
 - 4-and 5-year-olds showed adult-like coarticulation.
 - Younger children did not.

Future directions

- Examine children’s coarticulation in incorrect productions of clusters.
- Examine whether stop-/s/ and /s/-stop sequences differ in perceptual salience.
- Use a different analysis to describe coarticulation in clusters involving velars.
Acknowledgements

- Supported by grant NIDCD Grant R01DC02932 and NSF Grant BCS-0729140 to Jan Edwards
- Thanks to the children who took part in the study, the parents who gave their consent, and the schools at which data was collected
- Special thanks to:
 - Marios Fourakis
 - Katerina Nicolaides
 - Areti Okalidou