GENERAL BACKGROUND

- There exists huge diversity of how biological system cope with the environment
- Aristotle: human is ZOON POLITIKON
 (ζωον πολίτίκον)

We could add: ZOON PLIROFORIKON
(ζωον πληροφορίκον)
GENERAL BACKGROUND

- Language is our sixth sense – extremely powerful input-output channel
- Language is complex adaptive system (CAS)
 The “Five Graces Group” (2009): Beckner, Ellis, Blythe, Holland, Bybee, Ke, Christiansen, Larsen-Freeman, Croft, and Schoenemann
- Information theory provides formal characterisations of parts of such a system

HISTORICAL OVERVIEW

INFORMATION THEORY AND LEXICAL PROCESSING

- Amount of information
 (Kostić, 1991, 1995; Kostić et al., 2003 etc.)

\[
I_e = - \log_2 \Pr_\pi(e)
\]

\[
I'_e = - \log_2 \left(\frac{\Pr_\pi(e)/R_e}{\sum_e \Pr_\pi(e)/R_e} \right)
\]

- Family size
 (Schreuder & Baayen, 1997)
- Singular/Plural dominance
 (Baayen et al., 1997)
HISTORICAL OVERVIEW

INFORMATION THEORY AND LEXICAL PROCESSING

- Entropy
 (Moscoso del Prado Martín et al., 2004)

\[
H = - \sum_e \Pr_{\pi}(w_e) \log_2 \Pr_{\pi}(w_e)
\]

\[
I_R = I_w - H
\]

- Derivational vs Inflectional entropy
 (Baayen et al., 2006)

INFLECTED NOUNS IN SERBIAN

<table>
<thead>
<tr>
<th>Inflected variant</th>
<th>Frequency</th>
<th>Relative frequency</th>
<th>Exponent</th>
<th>Frequency</th>
<th>Relative frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>planin-(a)</td>
<td>169</td>
<td>0.31</td>
<td>-(a)</td>
<td>18715</td>
<td>0.26</td>
</tr>
<tr>
<td>planin-(u)</td>
<td>48</td>
<td>0.09</td>
<td>-(u)</td>
<td>9918</td>
<td>0.14</td>
</tr>
<tr>
<td>planin-(e)</td>
<td>191</td>
<td>0.35</td>
<td>-(e)</td>
<td>27803</td>
<td>0.39</td>
</tr>
<tr>
<td>planin-(i)</td>
<td>88</td>
<td>0.16</td>
<td>-(i)</td>
<td>7072</td>
<td>0.10</td>
</tr>
<tr>
<td>planin-(om)</td>
<td>30</td>
<td>0.05</td>
<td>-(om)</td>
<td>4265</td>
<td>0.06</td>
</tr>
<tr>
<td>planin-(ama)</td>
<td>26</td>
<td>0.05</td>
<td>-(ama)</td>
<td>4409</td>
<td>0.06</td>
</tr>
</tbody>
</table>
NOMINAL CLASSES AND PARADIGMS

knjiga (book)

snaga (power)

pučina (open−sea)

feminine class exponents

Pr
Nominal Classes and Paradigms

Information-Theoretic Perspective

\[D(P||Q) = \sum_e \Pr_{\pi}(w_e) \log_2 \frac{\Pr_{\pi}(w_e)}{\Pr_{\pi}(e)} \]

(Milin, Filipović Đurđević, & Moscoso del Prado Martin, 2009)

Dynamics of the Classes and Paradigms
DYNAMICS OF THE CLASSES AND PARADIGMS

\[
f(target_e) \quad f(prime_e)
\]
DYNAMICS OF THE CLASSES AND PARADIGMS

Inlected variant Exponent

<table>
<thead>
<tr>
<th>Target</th>
<th>Inflected variant</th>
<th>Frequency</th>
<th>Prime</th>
<th>Frequency</th>
<th>Weight</th>
<th>Exponent</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>planin-(a)</td>
<td>169 struj-(a)</td>
<td>40</td>
<td>4.23</td>
<td>-(a)</td>
<td>18715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>planin-(u)</td>
<td>48 struj-(u)</td>
<td>23</td>
<td>2.09</td>
<td>-(u)</td>
<td>9918</td>
<td></td>
<td></td>
</tr>
<tr>
<td>planin-(e)</td>
<td>191 struj-(e)</td>
<td>65</td>
<td>2.94</td>
<td>-(e)</td>
<td>27803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>planin-(i)</td>
<td>88 struj-(i)</td>
<td>8</td>
<td>11.0</td>
<td>-(i)</td>
<td>7072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>planin-(om)</td>
<td>30 struj-(om)</td>
<td>9</td>
<td>3.33</td>
<td>-(om)</td>
<td>4265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>planin-(ama)</td>
<td>26 struj-(ama)</td>
<td>17</td>
<td>1.53</td>
<td>-(ama)</td>
<td>4409</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DYNAMICS OF THE CLASSES AND PARADIGMS

INFORMATION-THEORETIC PERSPECTIVE

\[
D(P||Q; W) = \sum_e \frac{\Pr(e) \omega_e}{\sum_e \Pr(e) \omega_e} \log_2 \frac{\Pr(e)}{\Pr(e)}; \quad \omega_e = \frac{f(\text{target}_e)}{f(\text{prime}_e)}
\]

(Baayen, Milin, Filipović Đurđević, Hendrix, & Marelli, 2011)

LIGHTER SHADE OF PALE

- Do we (really want to) believe that we are doing on-line entropy measuring while we listen/speak/read/write?
- Information-theoretic measures must take proper epistemological positioning in our way of thinking about language
- Levels of analysis (Marr, 1982):
 - computational: what does the system do, and why
 - algorithmic (representational): how does the system do, how it uses information
 - implementational: physical (biological) realisation
LANGUAGE AS A COMPLEX ADAPTIVE SYSTEM

- **COMPUTATIONALLY**
 Information theory is essential for understanding language as CAS.
 It characterises **what** the system is doing.

- **ALGORITHMICALLY**
 A simple model based on learning principles can give us insights into **how** language as CAS makes these dynamics.

PROCESSING MORPHOLOGY: STANDARD MODEL
PROCESSING MORPHOLOGY: AMORPHOUS MODEL

NAIVE DISCRIMINATIVE LEARNING PRINCIPLES

- Links between orthography (cues) and semantics (outcomes) are established through discriminative learning
 - Rescorla-Wagner discriminative learning equations
 (Rescorla & Wagner, 1972)
 - Equilibrium equations
 (Danks, 2003)
- The activation for a given outcome is the sum of all association weights between the relevant input cues and that outcome
 - cues: letters and letter combinations
 - outcomes: meanings
Rescorla-Wagner Equations

Recursive Discriminative Learning

\[V_{t+1}^i = V_t^i + \Delta V_t^i \]

with

\[\Delta V_t^i = \begin{cases}
0 & \text{if } \text{ABSENT}(C_i, t) \\
\alpha_i \beta_1 \left(\lambda - \sum_{\text{PRESENT}(C_i, t)} V_i \right) & \text{if } \text{PRESENT}(C_i, t) \& \text{PRESENT}(O, t) \\
\alpha_i \beta_2 \left(0 - \sum_{\text{PRESENT}(C_i, t)} V_i \right) & \text{if } \text{PRESENT}(C_i, t) \& \text{ABSENT}(O, t)
\end{cases} \]

- connection strength increases if cue is informative
- it decreases if cue is not discriminative
- the larger the set of cues, the smaller the individual connections

Example Lexicon

<table>
<thead>
<tr>
<th>Word</th>
<th>Frequency</th>
<th>Lexical Meaning</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>hand</td>
<td>10</td>
<td>HAND</td>
<td></td>
</tr>
<tr>
<td>hands</td>
<td>20</td>
<td>HAND PLURAL</td>
<td></td>
</tr>
<tr>
<td>land</td>
<td>8</td>
<td>LAND</td>
<td></td>
</tr>
<tr>
<td>lands</td>
<td>3</td>
<td>LAND PLURAL</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>35</td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td>sad</td>
<td>18</td>
<td>SAD</td>
<td></td>
</tr>
<tr>
<td>as</td>
<td>35</td>
<td>AS</td>
<td></td>
</tr>
<tr>
<td>lad</td>
<td>102</td>
<td>LAD</td>
<td></td>
</tr>
<tr>
<td>lads</td>
<td>54</td>
<td>LAD PLURAL</td>
<td></td>
</tr>
<tr>
<td>lass</td>
<td>134</td>
<td>LASS</td>
<td></td>
</tr>
</tbody>
</table>
THE RESCORLA-WAGNER EQUATIONS APPLIED

DANKS EQUILIBRIUM EQUATIONS

STABLE STATE

- If the system is in the stable state, connection weights to a given meaning can be estimated by solving a set of linear equations

\[
\frac{\begin{pmatrix}
 \Pr(C_0|C_0) & \Pr(C_1|C_0) & \ldots & \Pr(C_n|C_0) \\
 \Pr(C_0|C_1) & \Pr(C_1|C_1) & \ldots & \Pr(C_n|C_1) \\
 \ldots & \ldots & \ldots & \ldots \\
 \Pr(C_0|C_n) & \Pr(C_1|C_n) & \ldots & \Pr(C_n|C_n)
\end{pmatrix}}{
\begin{pmatrix}
 V_0 \\
 V_1 \\
 \ldots \\
 V_n
\end{pmatrix}
} = \frac{\begin{pmatrix}
 \Pr(O|C_0) \\
 \Pr(O|C_1) \\
 \ldots \\
 \Pr(O|C_n)
\end{pmatrix}}
\]

\[V_i: \text{association strength of } i\text{-th cue } C_i \text{ to outcome } O\]

- \(V_i\) optimises the conditional outcomes given the conditional co-occurrence probabilities of the input space
FROM WEIGHTS TO MEANING ACTIVATIONS

- The activation a_i of meaning i is the sum of its incoming connection strengths:
 \[a_i = \sum_j V_{ji} \]

- The greater the meaning activation, the shorter the response latencies
 - the simplest case: $RT_{simi} \propto -a_i$
 - to remove the right skew: $RT_{simi} \propto \log(1/a_i)$

THE NAIVE DISCRIMINATIVE LEARNING

- Basic engine is parameter-free, and driven completely and only by the language input
- The model is computationally undemanding: building the weight matrix from a lexicon of 11 million phrases takes about 10 minutes
- Full implementation in R (ndl package on CRAN)
SERBIAN NOMINAL CASE PARADIGMS

Training set: 270 nouns in 3240 inflected forms

<table>
<thead>
<tr>
<th>Target</th>
<th>Inflected variant</th>
<th>Frequency $F(w_e)_a$</th>
<th>Prime</th>
<th>Frequency $F(w_e)_b$</th>
<th>Weight ω_e</th>
<th>Exponent</th>
<th>Frequency $F(e)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>planin-a</td>
<td>struj-a</td>
<td>169</td>
<td>40</td>
<td>4.23</td>
<td>-a</td>
<td>18715</td>
<td></td>
</tr>
<tr>
<td>planin-u</td>
<td>struj-u</td>
<td>48</td>
<td>23</td>
<td>2.09</td>
<td>-u</td>
<td>9918</td>
<td></td>
</tr>
<tr>
<td>planin-e</td>
<td>struj-e</td>
<td>191</td>
<td>65</td>
<td>2.94</td>
<td>-e</td>
<td>27803</td>
<td></td>
</tr>
<tr>
<td>planin-i</td>
<td>struj-i</td>
<td>88</td>
<td>8</td>
<td>11.0</td>
<td>-i</td>
<td>7072</td>
<td></td>
</tr>
<tr>
<td>planin-om</td>
<td>struj-om</td>
<td>30</td>
<td>9</td>
<td>3.33</td>
<td>-om</td>
<td>4265</td>
<td></td>
</tr>
<tr>
<td>planin-ama</td>
<td>struj-ama</td>
<td>26</td>
<td>17</td>
<td>1.53</td>
<td>-ama</td>
<td>4409</td>
<td></td>
</tr>
</tbody>
</table>

EXPECTED AND OBSERVED COEFFICIENTS

![Graphs showing Simulated RT vs. Word Length, Target Form Frequency, and Weighted Relative Entropy]
SUMMARY OF RESULTS ON SERBIAN DATA

- Relative entropy effects persist in sentential reading
- They are modified, but not destroyed by the prime
- The interaction with masculine gender follows from the distributional properties of the lexical input
- The interaction with nominative case remains unaccounted; it could be caused by syntactic functions and meanings (cf., Kostić, 2003)
- Paradigmatic effects can arise without representations for complex words or representational structures for paradigms
ENGLISH PREPOSITIONAL PHRASE PARADIGMS

Training set: 11,172,554 two and three-word phrases from the British National Corpus, comprising 26,441,155 word tokens

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Frequency</th>
<th>Rel. freq.</th>
<th>Preposition</th>
<th>Frequency</th>
<th>Rel. freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>on a plant</td>
<td>28608</td>
<td>0.279</td>
<td>on</td>
<td>177908042</td>
<td>0.372</td>
</tr>
<tr>
<td>in a plant</td>
<td>52579</td>
<td>0.513</td>
<td>in</td>
<td>253850053</td>
<td>0.531</td>
</tr>
<tr>
<td>under a plant</td>
<td>7346</td>
<td>0.072</td>
<td>under</td>
<td>10746880</td>
<td>0.022</td>
</tr>
<tr>
<td>above a plant</td>
<td>0</td>
<td>0.000</td>
<td>above</td>
<td>2517797</td>
<td>0.005</td>
</tr>
<tr>
<td>through a plant</td>
<td>0</td>
<td>0.000</td>
<td>through</td>
<td>3632886</td>
<td>0.008</td>
</tr>
<tr>
<td>behind a plant</td>
<td>760</td>
<td>0.007</td>
<td>behind</td>
<td>3979162</td>
<td>0.008</td>
</tr>
<tr>
<td>into a plant</td>
<td>13289</td>
<td>0.130</td>
<td>into</td>
<td>25279478</td>
<td>0.053</td>
</tr>
</tbody>
</table>

EXPECTED AND OBSERVED COEFFICIENTS

\[r = 0.87, p < 0.0001 \]
SUMMARY OF RESULTS ON ENGLISH DATA

- Phrasal paradigmatic effect is modelled correctly, and **without representations for phrases**
- Again, we observed prototype and exemplar interplay, as expressed by the prepositional relative entropy, without explicit linkage between the two
- This confirms that syntactic context is relevant for word processing
- Crucially, word’s syntactic realisation raises its paradigmatic structures

THE MEANING OF RELATIVE ENTROPY

Q What connections in our model carry information about Relative Entropy?

- Inflectional exponents or prepositions are not at all discriminative
- They are present (active) in many words
- Contrariwise, base cues are those that give support for the particular realisation of inflected variants or phrases
- They carry **functional load** which we measure as Relative Entropy
THE MEANING OF RELATIVE ENTROPY

- From the cognitive perspective:
 - words are part of our mental representations
 - they denote what denotee does in reality
 - this seems to be encoded in our personal experience
 - and, more importantly, in our sixth-sense — language

- From the linguistic perspective:
 - this puts some challenge to the notion of compositionality
 - part of knowledge about paradigms are present in the base

CONCLUDING REMARKS

- Language as an COMPLEX ADAPTIVE SYSTEM has very rich dynamics, but optimality constraints
- Information theory is a fruitful tool that helps us understanding what are these constraints and why they emerge
- Relative Entropy does a beautiful job in revealing nature of WORDS and theirs PARADIGMS and CLASSES
- It even gives us insights into dynamics of words’ paradigmatics
CONCLUDING REMARKS

- Naive Discriminative Learning machinery is a simple model which does calculus of connectivity.
- In Marrian spirit, it can be seen just one possible algorithmic realisation of Bybee’s computational Network Model.
- It is probably way to simple, but does not require hard statistics on the hidden layer.
- It is useful for detailed linguistic and psychological analysis.
- Please, help us make it better! 😊

http://cran.opensourceresources.org/web/packages/ndl/index.html

COLLABORATORS

R. Harald Baayen, University of Alberta

Antti Arppe, University of Helsinki

Marco Marelli, University of Milano-Bicocca

Peter Hendrix, University of Alberta
THANK YOU!