FROM NOMINAL CASE IN SERBIAN TO PREPOSITIONAL PHRASES IN ENGLISH

Petar Milin

Department of Psychology, University of Novi Sad Laboratory for Experimental Psychology, University of Belgrade

GENERAL BACKGROUND

- There exists huge diversity of how biological system cope with the environment
- Aristotle: human is ZOON POLITIKON (ζωον πολίτίκον)

We could add: ZOON PLIROFORIKON $(\zeta\omega o\nu \pi\lambda\eta\rho o\phi o\rho i\kappa o\nu)$

GENERAL BACKGROUND

- Language is our sixth sense extremely powerful input-output channel
- Language is complex adaptive system (CAS)
 The "Five Graces Group" (2009): Beckner, Ellis,
 Blythe, Holland, Bybee, Ke, Christiansen,
 Larsen-Freeman, Croft, and Schoenemann
- Information theory provides formal characterisations of parts of such a system

HISTORICAL OVERVIEW

INFORMATION THEORY AND LEXICAL PROCESSING

Amount of information

(Kostić, 1991, 1995; Kostić et al., 2003 etc.)

$$I_e = -\log_2 \Pr_{\pi}(e)$$

$$I'_{e} = -\log_{2}\left(\frac{\Pr_{\pi}(e)/R_{e}}{\sum_{e}\Pr_{\pi}(e)/R_{e}}\right)$$

■ Family size (Schreuder & Baayen, 1997) Singular/Plural dominance (Baayen et al., 1997)

HISTORICAL OVERVIEW

INFORMATION THEORY AND LEXICAL PROCESSING

Entropy

(Moscoso del Prado Martín et al., 2004)

$$H = -\sum_{e} \Pr_{\pi}(w_e) \log_2 \Pr_{\pi}(w_e)$$

$$I_R = I_w - H$$

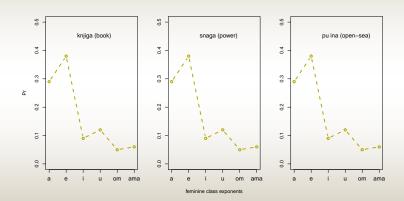
Derivational vs Inflectional entropy

(Baayen et al., 2006)

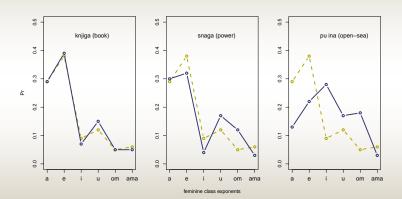
INFLECTED NOUNS IN SERBIAN

	Inflected	variant		Exponent	
	Frequency	Relative		Frequency	Relative
		frequency			frequency
	$F(w_e)$	$Pr_{\pi}(w_e)$		F(e)	$Pr_{\pi}(e)$
planin-a	169	0.31	-a	18715	0.26
planin-u	48	0.09	-u	9918	0.14
planin- <i>e</i>	191	0.35	-e	27803	0.39
planin- <i>i</i>	88	0.16	-i	7072	0.10
planin- <i>om</i>	30	0.05	-om	4265	0.06
planin- <i>ama</i>	26	0.05	-ama	4409	0.06

NOMINAL CLASSES AND PARADIGMS

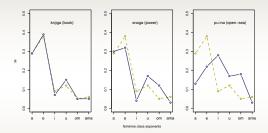


NOMINAL CLASSES AND PARADIGMS



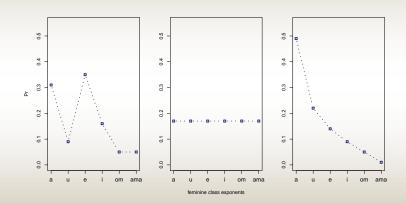
NOMINAL CLASSES AND PARADIGMS

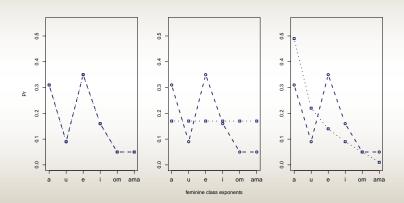
INFORMATION-THEORETIC PERSPECTIVE

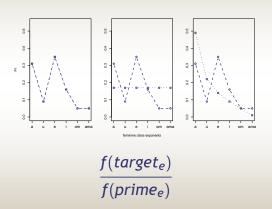


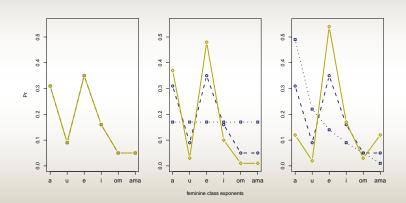
$$D(P||Q) = \sum_{e} \Pr_{\pi}(w_e) \log_2 \frac{\Pr_{\pi}(w_e)}{\Pr_{\pi}(e)}$$

(Milin, Filipović Đurđević, & Moscoso del Prado Martin, 2009)



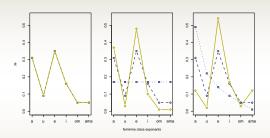






Inflected variant					Exponent	
Target	Frequency	Prime	Frequency	Weight		Frequency
	$F(w_e)_a$		$F(w_e)_b$	ω_e		F(e)
planin-a	169	struj-a	40	4.23	-a	18715
planin- <i>u</i>	48	struj- <i>u</i>	23	2.09	-u	9918
planin-e	191	struj-e	65	2.94	-е	27803
planin-i	88	struj-i	8	11.0	-i	7072
planin-om	30	struj-om	9	3.33	-om	4265
planin- <i>ama</i>	26	struj-ama	17	1.53	-ama	4409

INFORMATION-THEORETIC PERSPECTIVE



$$D(P||Q;W) = \sum_{e} \frac{\Pr_{\pi}(w_e)\omega_e}{\sum_{e} \Pr_{\pi}(w_e)\omega_e} log_2 \frac{\Pr_{\pi}(w_e)}{\Pr_{\pi}(e)}; \quad \omega_e = \frac{f(target_e)}{f(prime_e)}$$

(Baayen, Milin, Filipović Đurđević, Hendrix, & Marelli, 2011)

LIGHTER SHADE OF PALE

- Do we (really want to) believe that we are doing on-line entropy measuring while we listen/speak/read/write?
- Information-theoretic measures must take proper epistemological positioning in our way of thinking about language
- Levels of analysis (Marr, 1982):
 - computational: what does the system do, and why
 - algorithmic (representational): how does the system do, how it uses information
 - implementational: physical (biological) realisation

LANGUAGE AS A COMPLEX ADAPTIVE SYSTEM

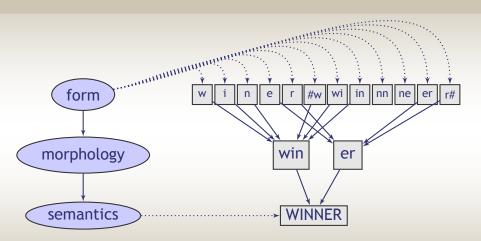
COMPUTATIONALLY

Information theory is essential for understanding language as CAS
It characterises what the system is doing

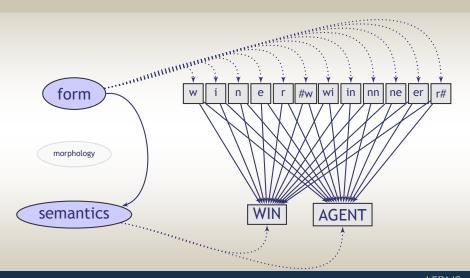
ALGORITHMICALLY

A simple model based on learning principles can give us insights into how language as CAS makes these dynamics

PROCESSING MORPHOLOGY: STANDARD MODEL



PROCESSING MORPHOLOGY: AMORPHOUS MODEL



NAIVE DISCRIMINATIVE LEARNING PRINCIPLES

- Links between orthography (cues) and semantics (outcomes) are established through discriminative learning
 - Rescorla-Wagner discriminative learning equations (Rescorla & Wagner, 1972)
 - Equilibrium equations (Danks, 2003)
- The activation for a given outcome is the sum of all association weights between the relevant input cues and that outcome
 - cues: letters and letter combinations
 - outcomes: meanings

RESCORLA-WAGNER EQUATIONS

RECURSIVE DISCRIMINATIVE LEARNING

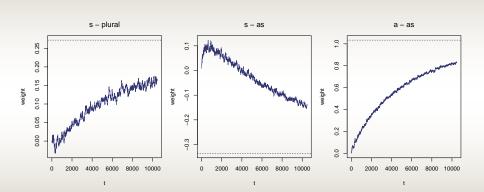
$$\begin{aligned} V_i^{t+1} &= V_i^t + \Delta V_i^t \\ \text{with} \\ \Delta V_i^t &= \left\{ \begin{array}{ll} 0 & \text{if absent}(\mathcal{C}_i, t) \\ \alpha_i \beta_1 \left(\lambda - \sum_{\text{present}(\mathcal{C}_i, t)} V_i \right) & \text{if present}(\mathcal{C}_i, t) \text{ \& present}(\mathcal{O}, t) \\ \alpha_i \beta_2 \left(0 - \sum_{\text{present}(\mathcal{C}_i, t)} V_i \right) & \text{if present}(\mathcal{C}_i, t) \text{ \& absent}(\mathcal{O}, t) \end{array} \right. \end{aligned}$$

- connection strength increases if cue is informative
- it decreases if cue is not discriminative
- the larger the set of cues, the smaller the individual connections

EXAMPLE LEXICON

Word	Frequency	Lexical Meaning	Number
hand	10	HAND	
hands	20	HAND	PLURAL
land	8	LAND	
land <mark>s</mark>	3	LAND	PLURAL
and	35	AND	
sad	18	SAD	
as	35	AS	
lad	102	LAD	
lads	54	LAD	PLURAL
lass	134	LASS	

THE RESCORLA-WAGNER EQUATIONS APPLIED



DANKS EQUILIBRIUM EQUATIONS

STABLE STATE

 If the system is in the stable state, connection weights to a given meaning can be estimated by solving a set of linear equations

$$\begin{pmatrix} Pr(C_0|C_0) & Pr(C_1|C_0) & \dots & Pr(C_n|C_0) \\ Pr(C_0|C_1) & Pr(C_1|C_1) & \dots & Pr(C_n|C_1) \\ \dots & \dots & \dots & \dots & \dots \\ Pr(C_0|C_n) & Pr(C_1|C_n) & \dots & Pr(C_n|C_n) \end{pmatrix} \begin{pmatrix} V_0 \\ V_1 \\ \dots \\ V_n \end{pmatrix} = \begin{pmatrix} Pr(O|C_0) \\ Pr(O|C_1) \\ \dots \\ Pr(O|C_n) \end{pmatrix}$$

 V_i : association strength of i-th cue C_i to outcome O

 V_i optimises the conditional outcomes given the conditional co-occurrence probabilities of the input space

FROM WEIGHTS TO MEANING ACTIVATIONS

■ The activation a_i of meaning i is the sum of its incoming connection strengths:

$$a_i = \sum_j V_{ji}$$

- The greater the meaning activation, the shorter the response latencies
 - the simplest case: RTsim_i $\propto -a_i$
 - to remove the right skew: RTsim_i $\propto \log(1/a_i)$

THE NAIVE DISCRIMINATIVE LEARNING

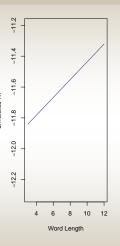
- Basic engine is parameter-free, and driven completely and only by the language input
- The model is computationally undemanding:
 building the weight matrix from a lexicon of 11 million phrases takes about 10 minutes
- Full implementation in R (ndl package on CRAN)

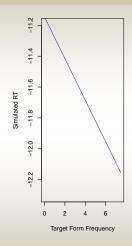
SERBIAN NOMINAL CASE PARADIGMS

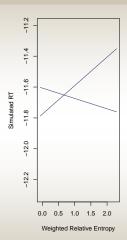
Training set: 270 nouns in 3240 inflected forms

Inflected variant					Expo	nent
Target	Frequency	Prime	Frequency	Weight		Frequency
	$F(w_e)_a$		$F(w_e)_b$	ω_e		F(e)
planin-a	169	struj-a	40	4.23	-a	18715
planin- <i>u</i>	48	struj- <i>u</i>	23	2.09	-u	9918
planin-e	191	struj-e	65	2.94	-е	27803
planin- <i>i</i>	88	struj-i	8	11.0	-i	7072
planin- <i>om</i>	30	struj-om	9	3.33	-om	4265
planin- <i>ama</i>	26	struj-ama	17	1.53	-ama	4409

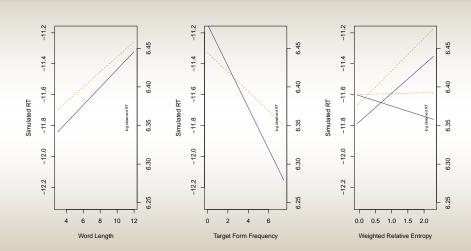
EXPECTED AND OBSERVED COEFFICIENTS







EXPECTED AND OBSERVED COEFFICIENTS



SUMMARY OF RESULTS ON SERBIAN DATA

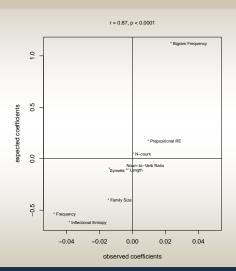
- Relative entropy effects persist in sentential reading
- They are modified, but not destroyed by the prime
- The interaction with masculine gender follows from the distributional properties of the lexical input
- The interaction with nominative case remains unaccounted; it could be caused by syntactic functions and meanings (cf., Kostić, 2003)
- Paradigmatic effects can arise without representations for complex words or representational structures for paradigms

ENGLISH PREPOSITIONAL PHRASE PARADIGMS

Training set: 11,172,554 two and three-word phrases from the British National Corpus, comprising 26,441,155 word tokens

	Phrase			Preposition	
	Frequency	Rel. freq.		Frequency	Rel. freq.
	$F(p_p)$	$Pr_{\pi}(p_p)$		F(p)	$Pr_{\pi}(p)$
on a plant	28608	0.279	on	177908042	0.372
in a plant	52579	0.513	in	253850053	0.531
<i>under a</i> plant	7346	0.072	under	10746880	0.022
above a plant	0	0.000	above	2517797	0.005
through a plant	0	0.000	through	3632886	0.008
behind a plant	760	0.007	behind	3979162	0.008
<i>into a</i> plant	13289	0.130	into	25279478	0.053

EXPECTED AND OBSERVED COEFFICIENTS



SUMMARY OF RESULTS ON ENGLISH DATA

- Phrasal paradigmatic effect is modelled correctly, and without representations for phrases
- Again, we observed prototype and exemplar interplay, as expressed by the prepositional relative entropy, without explicit linkage between the two
- This confirms that syntactic context is relevant for word processing
- Crucially, word's syntactic realisation raises its paradigmatic structures

THE MEANING OF RELATIVE ENTROPY

- Q What connections in our model carry information about Relative Entropy?
 - Inflectional exponents or prepositions are not at all discriminative
 - They are present (active) in many words
 - Contrariwise, base cues are those that give support for the particular realisation of inflected variants or phrases
 - They carry functional load which we measure as Relative Entropy

THE MEANING OF RELATIVE ENTROPY

- From the cognitive perspective:
 - words are part of our mental representations
 - they denote what denotee does in reality
 - this seems to be encoded in our personal experience
 - and, more importantly, in our sixth-sense language
- From the linguistic perspective:
 - this puts some challenge to the notion of compositionality
 - part of knowledge about paradigms are present in the base

CONCLUDING REMARKS

- Language as an COMPLEX ADAPTIVE SYSTEM has very rich dynamics, but optimality constraints
- Information theory is a fruitful tool that helps us understanding what are these constraints and why they emerge
- Relative Entropy does a beautiful job in revealing nature of Words and theirs Paradigms and Classes
- It even gives us insights into dynamics of words' paradigmatics

CONCLUDING REMARKS

- Naive Discriminative Learning machinery is a simple model which does calculus of connectivity
- In Marrian spirit, it can be seen just one possible algorithmic realisation of Bybee's computational Network Model
- It is probably way to simple, but does not require hard statistics on the hidden layer
- It is useful for detailed linguistic and psychological analysis
- Please, help us make it better! ©

http://cran.opensourceresources.org/web/packages/ndl/index.html

COLLABORATORS

R. Harald Baayen, University of Alberta

Antti Arppe, University of Helsinki

Marco Marelli, University of Milano-Bicocca

Peter Hendrix, University of Alberta

THANK YOU!

Department of Psychology Faculty of Philosophy University of Novi Sad

Laboratory for Experimental Psychology Faculty of Philosophy University of Belgrade